jh230068

# 大規模地震波シミュレーションによる沈み込み帯の波形 トモグラフィー:2011年東北沖地震震源域と南西諸島域

### 岡元太郎(東京工業大学)

#### 概要

東北沖パート(§5.1)では、2011年東北地方太平洋沖地震震源域の全波形トモグラフィーに関 する海溝付近の観測点カバレッジを向上させるために、海底地震計データの本格的な導入の可能 性について検討を行なった。まず ① 海底における地動を表現するグリーンテンソル波形を、固 体・流体境界条件を考慮した HOT-FDM を用いて生成した。この地震波シミュレーションには TSUBAME-3.0 を利用した。② 23 観測点の海底地震計データの品質を慎重に検討してデータ選 択を行なった。③ 海底地震計データを追加した FAMT 解析を実施して結果を検討し、観測波形 の鉛直成分だけではなく水平動成分も良好に再現できること、最適震源位置やモーメントテンソル は陸上データのみを利用した場合と調和的であること、などの結果を得た。これらの結果から、海 底地震計データを全波形トモグラフィ解析に追加できる見通しが立てられた。南西諸島域パート (§ 5.2) では、①南西諸島前弧域の最新の反射法探査測線で地盤構造を補完し、琉球海溝に沿った 地盤の新しいモデルを作成した。②その新モデルを従来の構造モデルに組み込んで、名古屋大学の 「不老」スーパーコンピュータ Type-I サブシステムによる大規模計算結果を用いた地震波伝播のテ スト計算を実施し、地盤モデルの違いによる地震波伝播の違いを検討した。③南大東島観測点で記 録された観測波形のモデリングを実施して、新モデルにより波形再現性が向上することを確認した。 この結果により、新しいモデルによって奄美群島・沖縄諸島の観測点だけを使う場合よりも観測点 配置を改善できる可能性を示せた。

1

# 1 共同研究に関する情報

#### 1.1 共同研究を実施した拠点名

- 東京工業大学 学術国際情報センター
- 名古屋大学 情報基盤センター
- 1.2 課題分野
  - 大規模計算科学課題分野
- 1.3 共同研究分野 (HPCI 資源利用課題のみ)
  - 超大規模数值計算系応用分野

#### 1.4 参加研究者の役割分担

| 岡元太郎(東京   | 研究代表者・TSUBA ME   |
|-----------|------------------|
| 工業大学・理学院) | 3.0 での地震波計算とト    |
|           | モグラフィー解析         |
| 竹中博士(岡    | 副代表者・不老(Type I)  |
| 山大学・学術研究  | での地震波計算と構造モ      |
| 院自然科学学域)  | デルの検討            |
| 青木尊之(東京   | GPU 計算最適化・大規模    |
| 工業大学・学術国  | 並列化・可視化への助言      |
| 際情報センター)  |                  |
| 小松正直(岡山   | 不老 (TypeI) での地震波 |
| 学院大学・人間生  | 計算と構造モデルの検討      |
| 活学部)      |                  |
| 渡邉禎貢(岡    | 不老 (TypeI) での地震波 |
| 山大学・自然科学  | 計算と構造モデルの検討      |
| 研究科)      |                  |

# 2 研究の目的と意義

本継続課題では大規模地震波シミュレーショ ンを用いた全波形トモグラフィーによって沈み 込み帯の3次元不均質構造モデルを改良する 研究を行う。本課題の最終目標は、改良した3 次元構造モデルによって短周期の波形再現性を 向上させて震源パラメータや破壊過程の解析を 高精度化し、地震発生場と地球内部構造との相 関関係を探る研究を短波長域に拡張することで ある。本課題の対象領域は 2011 年東北地方太 平洋沖地震(以下「東北沖地震」)の震源域と 南西諸島域の2つとする。今年度のテーマは次 のようになる。①東北沖地震震源域:昨年度ま での陸上観測点データを用いた全波形トモグラ フィーでは、海溝近傍の分解能を上げにくいこ とがわかってきた。そこで今年度は海底地震計 データを本格的に導入して、データ再現性や解 析結果の品質に関する検討を行った。②南西諸 島域:昨年度までの研究で、海溝近傍から海溝 外側にかけての地盤構造モデルを改良する必要 性が明らかになった。そこで今年度は構造モデ ルの改良と、波形計算による検討を進めた。

# 3 当拠点公募型研究として実施した 意義

プレートの沈み込み帯は、固体と流体(海水 層)が不規則境界面(海底地形)で接しており、 さらに不規則厚みの堆積物層や沈み込む海洋プ レートなどの存在によって強い3次元不均質構 造になっている。本研究では、この地域を伝播 する地震波波形を観測データとして、観測デー タと計算波形との残差が小さくなるような3次 元速度構造モデルを推定する。そのため不均質 構造によって地震波が受ける伝播経路の屈曲 や散乱などの効果を考慮した地震波伝播シミュ レーションが必要不可欠である。そして本研究 では最短で周期数秒程度の波動場を対象とする ことから、地震波シミュレーションの格子間隔 は 100 - 200 m 程度となる。具体的には、東 京工業大学の TSUBAME-3.0 での代表的な計 算パラメータは格子間隔:0.15 km、格子サイ ズ:4896 × 3360 × 800、時間ステップ:35000 (250 s)、使用 GPU:126 基 (32 ノード)、計 算時間:約1時間、という規模であり、名古屋 大学の FX1000 では最大で格子間隔:約 0.20 km、格子サイズ:2201 × 5501 × 1001、時間 ステップ:60001 (600 s)、使用ノード数:432、 計算時間:約2時間という規模である。これら の大規模計算を行うために、本公募の共同研究 として実施する必要性がある。

本課題で得られる震源位置・震源メカニズム などの震源パラメータと、最終目標としている 改良された地球内部構造モデルは、地震発生域 における物質強度・断層帯等のプレート内部微 細構造・プレートの変形速度、などのプレート・ テクトニクスに基づいた考察に新たな材料をも たらすと期待している。本課題で得られる知見 をもとに、地震災害をもたらす強地震動の生成 における3次元不均質構造の効果について地震 工学や防災科学と関連させて考察することも可 能となる。このように、本課題は地震の震源物 理にとどまらず、様々な分野の知見を総合した 考察に繋がるものである。

# 4 前年度までに得られた研究成果の 概要

前年度は、東北沖パートでは東京工業大学の TSUBAME-3.0 の GPU を利用した大規模計 算結果をもとにして、①地震個数を増やすた めの追加 FAMT 解析および地震波シミュレー ションと、②逆問題解析の性質を理解するた めの分解能行列の検討を行った(前年度報告書 § 5.1.1)。その結果、分解能が海溝近傍では低 下することが見出されたため海底地震計デー タを追加することとした。そして③海底地震 計データを加えた試験的な FAMT 解析を行な い、海底地震計の波形データが良好に再現でき ることを確認した(前年度§5.1.2)。南西諸島 域パートでは、名古屋大学の「不老」スーパー コンピュータ Type-I サブシステムによる大規 模計算結果によって、①トカラ列島群発地震解 析のためのグリーンテンソル波形計算を多数の 震源候補点に対して実施した。そして②対象領 域の地震について FAMT 解析を実施して、少 数で遠方の観測点だけの場合でも良好な結果が 得られることを確認できた(前年度§5.2)。



図 1 HOT-FDM の格子点配置(Nakamura et al. BSSA 2012)。固体-流体境界面に剪断応力成分の 格子点(六角形で表示した点)を配置する。

### 5 今年度の研究成果の詳細

ここでは東北沖を対象としたパートと、南西 諸島を対象としたパートに分けて記載する。

5.1 東北沖:海底地震計データを用いた解析

研究の背景 これまでの研究によって、陸上観 測点のデータのみを利用した場合には、陸上の 観測網から遠く離れた日本海溝の近傍における トモグラフィの解像度が相対的に低下している ことが見出された(2023 年度 JHPCN 課題)。 この地域の解像度を高めるためには、海底地震 計から得られたデータを波形トモグラフィ解析 に組み込むことによって海溝近傍領域の観測点 カバレッジを向上させることが不可欠であると 考えられる。そこで本研究では東北沖の日本海 溝に設置された海底地震計観測網の多数点での 波形記録をモデル化することを目的とする。

FAMT 解析 本研究の波形トモグラフィー では自然地震の詳細な震源パラメータを用い る。その推定には我々が提案した FAMT 解析 (Okamoto et al. *EPS* 2017, 2018)を利用す る。FAMT 解析では、短周期(4–40 秒)の P 波初動波形と長周期(10–40 秒)の全波形を同 時に使用することによって、P 波の到達時刻に 関する情報が強化され、それに伴い震源位置の 精度や震源時間関数が向上する。

表 1 東北沖領域の計算パラメータ

| 全格子サイズ     | $4896\times 3360\times 800$ |
|------------|-----------------------------|
| 副領域サイズ     | $544 \times 480 \times 400$ |
| 格子間隔       | 150 m                       |
| 時間ステップ数    | 35000                       |
| 時間間隔       | $0.007143 \ s$              |
| ノード数       | 32                          |
| GPU 数      | 126                         |
| 1 回あたり計算時間 | 3902 s(平均值)                 |

海底に対応した HOT-FDM FAMT 解析 では海底に設置した地震計について、陸上地 形・海底地形・海水層の効果を含めたグリーン テンソル波形が必要となる。このグリーンテ ンソル波形は、我々が開発した陸海統合3次元 差分法(HOT-FDM: Nakamura et al. BSSA 2012)を用いた大規模地震波伝播シミュレー ションによって計算する。この手法では固体・ 流体境界である海底形状を差分法格子によっ て近似する。その際、応力テンソルの剪断成分 (*Txy*, *Tyz*, *Txz*)が固体・流体境界面に位置する ように境界面を階段状に設定する。この配置に よって空間 2 次精度で差分化した運動方程式の もとで固体・流体境界面での境界条件が 1 次精 度で自動的に満たされる(岡元・竹中、地震、 2005; 中村・他、地震、2011; 図 1)。格子点を このように配置しない場合には境界条件が満た されず異常な波動が現れるので注意が必要であ る。計算精度を維持するために、固体・流体境 界面以外の格子点では空間 4 次精度で差分化し た運動方程式を用いる。



図 2 日本海溝海底地震津波観測網 (S-net)。(a) S-net 全体のネットワーク (Aoi et al., EPS 2020)。 (b) 本課題の対象領域。黄色の三角形で示され た 23 ヶ所の S-net 観測点の波形データを使用 した。図には Global CMT 解 (Ekström et al., PEPI 2012)、および本研究で使用した陸上観測点 (KiK-net および F-net、黒い三角形)を示した。

また、海底地震計のためのグリーンテンソル 波形(対象領域の任意の場所で発生した単位地 震に対する該当観測点で記録される地震波波 形)を計算するために、相反関係を使って海底 面の観測点位置に力源(single force)を置いた ときの波動伝播をシミュレートする。この際、 境界面に垂直な方向の力源は境界面に位置する 法線速度成分の運動方程式に追加される。境界 面に平行な方向の力源は、境界から半格子間隔 だけ内部(固体側)にある接線速度成分の方程 式に追加する。これは(流体の粘性を無視する 近似のもとで)固体・流体境界面では境界面の 接線方向変位に不連続が発生するためである。 東北沖パートでは、これらのグリーンテンソ ル波形を計算するために GPU 対応の HOT– FDM (Okamoto et al. 2013)を用いた。この 方法では GPU 対応の各種の最適化を施したほ か、上記の各格子点が空間 2 次精度と 4 次精度 のどちらになるかをあらかじめチェックしてフ ラグをつけておき、計算ループでの計算式使い 分けが速やかに実行されるようにしている。

海底地震計観測網(S-net) 日本海溝海底地 震津波観測網(S-net)は、2017年3月に建設が 完了した(Aoi et al. *EPS* 2020; 図 2a)。150 の観測点が光ケーブルで接続されており、各観 測点には加速度計・速度地震計・圧力計が装備 されている。本研究では、対象地域である 2011 年東北沖地震の震源域にある 23 個の観測点の 加速度計記録を使用した(図 2b 参照)。

S-net の加速度計が固定されている海底ケー ブルについては、地震動に伴ってケーブル自体 が若干の回転をするなど、地震動とは異なる動 きが発生する可能性がある(Nakamura et al. *GJI* 2019; Hayashimoto, et al. *JSVE* 2023)。 また多くの海底観測点が軟弱地盤(堆積物)の 上に敷設されている。これらの条件のために海 底観測点の波形データ利用では慎重な検討が必 要となる。



図 3 2017 年 10 月 6 日のアウターライズ地震 (図 2) について S6N14 観測点(図 2) での海底面 での上下動成分加速度波形と、それを積分した地動 速度波形。

そこで今年度はデータ選択について着目し ながら震源パラメータ解析を進めた。まず、Snet センサーはケーブル方向に固定されている ので、その姿勢角を評価して原記録波形を回 転し垂直および水平成分加速度波形に復元す る。この際、地震動の前後で姿勢角がほぼ変化 していないことなどを独自にチェックしたう えで、Takagi et al. (2019)の姿勢角報告値を 用いて回転した。さらに FAMT 解析では速度 波形を使用するため、加速度波形を時間積分す る必要がある。しかし震源に近い観測点では速 度波形に異常なオフセットが現れることがある (図 3)。全ての波形をチェックして、このよう なオフセットが現れている波形は除外した。



図 4 2017 年 10 月 6 日のアウターライズ地震に関 する FAMT 解析結果のまとめ。



図 5 2020 年 4 月 18 日のやや深い地震に関する FAMT 解析結果のまとめ。

**S-net データを加えた FAMT 解析** 陸上 データと多数の海底データを同時に利用した FAMT 解析によって得られた海底地震計の波 形モデリング結果の例を図 4 に示す。図 4 は 海溝外側のアウターライズで発生した地震の例 である。これは観測網の中で発生したやや大き めの規模の地震であり、広い範囲にわたって比 較的に良好な波形が観測された。そして解析の 結果、多くの観測点で3次元構造モデルと最適 な震源パラメータに基づく計算波形により観測 波形の特徴を概ね再現できることが見出された (図 4)。この再現性は垂直成分(U)だけでな く、水平成分(XおよびY)でも顕著である。 また陸上データのみを用いた場合と、陸上およ び S-net データを併用した場合の震源位置には 若干の違いがある。しかし、これは震源断層の 規模(約20km)の範囲に両者がほぼ収まると みなされる (図 4 の断面図)。モーメントテン ソルも同様に両者でほぼ一致している(図4の 右下角の図)。陸寄りのやや深い位置で発生し た地震でも、同様の特徴を示す結果が得られた (図 5)。

これらから、適切に選択した多数の海底地震 計(S-net)データが FAMT 解析に利用可能で あり、波形トモグラフィ解析にも組み込める ことを確認できた。同時に、S-net 導入前の陸 上観測網データのみを用いた FAMT 解析結果 も、震源時間関数には若干の差異はあるもの の、信頼できるものであることが示された。

| 我 2 用臼田西域のシミュレ ション |                           |                           |  |
|--------------------|---------------------------|---------------------------|--|
|                    | 地震 (1)                    | 南大東島 加振                   |  |
| 格子サイズ              | $2001 \times 2701 \times$ | $2001 \times 2701 \times$ |  |
|                    | 401                       | 1001                      |  |
| 格子間隔               | 200 m                     | 200 m                     |  |
| 時間間隔               | 0.01 s                    | 0.01 s                    |  |
| 時間ステッ              | 20001                     | 60001                     |  |
| プ数                 |                           |                           |  |
| 計算時間               | 約 19 分                    | 約 101 分                   |  |

表 2 南西諸島域のシミュレーション

#### 5.2 南西諸島域:構造モデルの構築

**構造モデル構築** 今年度はまず、南西諸島前 弧域の付加体を含む堆積層のモデルを構築し、 付加体を伝播する地震波のテスト計算を行っ た。これには、南西諸島の地盤モデルとして Ver4 まで公開されている防災科学技術研究所 の「J-SHIS モデル」では、南西諸島域の海溝 沿いの領域で付加体を含む堆積層のモデル化が 不十分であると考えられることが背景にある。 そこで本研究では最新の反射法探査測線で推定 された地盤構造を補間することで、琉球海溝に 沿った地盤の厚さモデルを作成した(図 6)。地 盤の各層の厚さは J-SHIS モデルの層厚の比を 基にした。



図 6 左図: J-SHIS モデルによる地盤の厚さ、中図: 今回作成した付加体を含む厚さモデル、右図:両者 を結合したモデル。

波形計算(1) この琉球海溝に沿った新たな 地盤の厚さモデルによる波動伝播を検討するた めに、既存の3次元構造モデル(小松 博士論 文 2018) にこのモデルを組み込んで2種類の 地震波伝播シミュレーションを行った。一つ目 は 2016 年 7 月に沖縄本島沖で発生した Mw5.1 の地震(北緯 26.532 度、東経 128.771 度、深 さ 20km;小松・他(2023)で推定)の波動伝 播を粗い格子で計算したものである(図7、表 2の地震(1))。比較のために従来の構造モデル (小松 博士論文 2018) による計算も行った。そ の結果、南北を横断する A-A' における鉛直 断面上を伝播する地震波は地盤モデルの違いに より、その様相が異なることが確認された。二 つ目のシミュレーションでは南大東島の気象庁 観測点 MINAM2 の位置に Z(鉛直下向き)方 向に加振する力源を置き、付加体を通過するグ リーン関数波形を計算した(図8、表2の南大 東島加振)。得られた F-net の3 観測点におけ る Z 成分の波形を図 8 に示す。特に発震後 100 秒以降のフェーズが従来モデルによるものと異 なることが分かる。



図7左図:計算領域(赤線で囲まれた範囲)。破線 A-A'は右図に示した鉛直断面の位置を示す。右 図:地下構造の鉛直断面と発震25秒後の粒子速度 のスナップショット。黒楕円で囲まれた領域は地盤 の厚さが特に異なる箇所。



図 8 南大東島観測点位置を Z(鉛直下向き)に加振 して生成したグリーン関数の Z 成分の計算波形(周 期帯は 10~40 秒)。赤線が本研究の新モデルで計 算された波形、緑線は従来モデル(小松 博士論文 2018)によるモデルで計算された波形。

| 表 3 実地震のシ | ンミュレーション (2)              |
|-----------|---------------------------|
| 格子サイズ     | $4001\times5401\times801$ |
| 格子間隔      | 100 m                     |
| 時間間隔      | 0.005 s                   |
| 時間ステップ数   | 40001                     |
| 計算時間      | 約 94 分                    |

波形計算(2) さらに格子間隔を細かくして 2016年7月に沖縄本島沖で発生した Mw5.1の 地震について再計算を行い(図9、表3)、観 測波形と比較した。比較に当たっては、特に南 大東島での波形に着目する。なぜなら南大東島 観測点は琉球海溝を挟んで奄美群島・沖縄諸島 とは反対側にあり、この観測点のデータを有効 に使えれば奄美群島・沖縄諸島に偏った観測点 配置の改善につながるためである。

そこで震源から背弧側を伝播した地震波が到 来する観測点 N.AMMF (F-net 奄美大島)と、 付加体を含む前弧側を伝播した波形が到来する 観測点 MINAM2 (JMA 南大東島)での波形を 比較した (図 10)。その結果、MINAM2 (JMA 南大東島)の理論波形の違いが顕著であること が明らかになった。特に EW 成分について新 しいモデルをもとにして計算した理論波形で は、従来モデルによるものと比べて観測波形の 特徴の再現性が大きく向上したことがわかる。 これは本研究のモデル改良方針が妥当であった ことを示しており、今後の展開を期待できる。



図 9 実地震の計算に用いたモデル。左図:従来モデ ル(小松 2018) での地盤下面(地震基盤面)の標 高。右図:今回作成したモデルによる地盤下面(地 震基盤面)の標高。星印は震央、逆三角は観測点を それぞれ示す。



図 10 観測波形と理論波形の比較(周期 10~40 秒 の帯域)。赤線が観測波形、緑線が本研究による新 モデルで計算された波形、青線は従来モデル(小松 2018)で計算された波形。

# 6 今年度の進捗状況と今後の展望

東北沖パート (§ 5.1) では、2011 年東北地方 太平洋沖地震震源域の全波形トモグラフィーに 関する海溝付近の観測点カバレッジを向上させ るために、海底地震計データの本格的な導入の 可能性について検討を行なった。まず ① 海底 における地動を表現するグリーンテンソル波形 を、固体・流体境界条件を考慮した HOT-FDM を用いて生成した。この地震波シミュレーショ ンには TSUBAME-3.0 を利用した。② 23 観 測点の海底地震計データの品質を慎重に検討し てデータ選択を行なった。③ 海底地震計デー タを追加した FAMT 解析を実施して結果を検 討し、観測波形の鉛直成分だけではなく水平動 成分も良好に再現できること、最適震源位置や モーメントテンソルは陸上データのみを利用 した場合と調和的であること、などの結果を得 た。これらの結果から、海底地震計データを全 波形トモグラフィ解析に追加できる見通しを立 てることができ、本年度の目的の主要部分を達 成できた。来年度は海底地震計データをを用い た地震解析数をさらに増やし、海底地震計デー タを含めた波形トモグラフィの研究を進める。 なお、東北沖パートでは付与された計算資源の ほとんど(99.8%)を消費して、グリーンテン ソル波形計算のための地震波シミュレーション や計算結果を保存するストレージ使用料などの ために利用させていただいた。

南西諸島のパートでは、①南西諸島前弧域の 最新の反射法探査測線で地盤構造を補完し、琉 球海溝に沿った地盤の新しい厚さモデルを作 成した。②その新モデルを従来の構造モデルに 組み込んで地震波のテスト計算を実施し、地盤 モデルの違いによる地震波伝播の違いを検討し た。③南大東島観測点で記録された観測波形の モデリングを実施して、新モデルにより波形再 現性が向上することを示せた。この結果は、新 しいモデルによって奄美群島・沖縄諸島の観測 点だけを使う場合よりも観測点配置を改善でき る可能性を示唆する。このように今後の展開が 期待できる結果が得られ、本年度の目的をほぼ 達成できた。来年度は南西諸島の地質構造の地 域間のギャップをより反映させる形で今年度作 成したモデルをさらに改良して、南西諸島域を 伝播する波動場モデリングの改善を目指す。な お南西諸島パートでも付与された計算資源(名 古屋大学 FX1000)の全てを消費して、地震波 シミュレーション他のために利用させていただ いた。

# 7 研究業績一覧(発表予定も含む)

### 学術論文 (査読あり)

該当なし。

**国際会議プロシーディングス** (査読あり) 該当なし。

#### 国際会議発表 (査読なし)

Taro Okamoto, Hiroshi Takenaka, Takeshi Nakamura, 'Modeling the waveform records from the ocean-bottom seismograph network (S-net) for the full waveform tomography of the 2011 Tohoku-Oki earthquake source area', American Geophysical Union 2023 Annual Meeting, S06 – 1380259, Jan. 25, 2024. 国内会議発表 (査読なし)

# 岡元 太郎・竹中 博士・中村 武史、2011 年 東北地方太平洋沖地震震源域の全波形トモグ ラフィーを目的とした海底地震計 (S-net) 波形 データのモデリング、日本地震学会 2023 年度 秋季大会、S01P-05、2023 年 11 月 1 日.

#### 公開したライブラリ等

該当なし。

その他(特許,プレス発表,著書等) 該当なし。

#### 参考文献

- Okamoto T, Takenaka H, Nakamura T, Hara T (2017) Earth, Planets and Space 69:88.
- Okamoto T, Takenaka H, Nakamura T (2018) Earth, Planets and Space 70:98.
- 3 Nakamura T, Takenaka H, Okamoto T, Kaneda Y (2012) Bull Seism Soc Am 102:2420–2435.
- 4 岡元太郎・竹中博士 (2005) 地震 **57**:355-364.
- 中村武史・竹中博士・岡元太郎・金田義行 (2011) 地震 63:189–196.
- 6 Okamoto T, Takenaka H, Nakamura T, Aoki T (2013) in GPU solutions to multiscale problems in science and engineering, Chapter 24. Springer, Berlin.
- Aoi S, Asano Y, Kunugi T, Kimura T, Uehira K, Takahashi N, Ueda H, Shiomi K, Matsumoto T, Fujiwara H (2020) Earth, Planets and Space 72:126.
- 8 Ekström G, Nettles M, Dziewoński A M (2012) Phys Earth Planet Int 200– 201:1–9.
- 9 Nakamura T, Hayashimoto N (2019) Geophys. J. Int. 216:1413–1427.
- Hayashimoto N, Noguchi K, Satio J, Hoshiba M (2023) Journal of Seismology, Volcanology and related Engineering 86:4.
- 11 Takagi R et al. (2019) Seismo. Res. Lett. 90:2175–2187.
- 12 小松正直 (2018) 岡山大学博士学位論文.
- 小松正直・竹中博士・岡元太郎・中村武史 (2023) 地震 76:17–30.