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Machine Learning for Soft-Matter Flows

John J. Molina (Kyoto University)

Abstract

We have developed (Physics Informed) Machine Learning (ML) methods capable of re-

placing and/or complementing simulation methods for Soft Matter flows. We focus on three

characteristic problems: (A) simulating entangled polymer melts, (B) inferring flow solutions,

and (C) navigating non-uniform flows. (A) We used ML to infer the constitutive equation

of entangled polymers within the Doi-Takimoto and Kremer-Grest models, and used these

learned equations to perform macroscopic flow simulations. These simulations can be orders

of magnitude faster than state-of-the-art Multi-Scale Simulations (MSS), without sacrificing

accuracy. (B) We developed a (Bayesian) probabilistic flow inference framework capable of

inferring the solution to arbitrary Stokes flow problems given partial and/or noisy data. In

contrast to alternative ML approaches, we guarantee that the underlying physical equations

are satisfied exactly (on average). (C) Finally, we have developed a learning protocol to

enable swimmers to navigate complex flows using only local hydrodynamic signals.

1 Basic information

1.1 Collaborating JHPCN centers

• The University of Tokyo

• Osaka University

1.2 Theme area

• Large-scale computational science

1.3 Research area

• Very large-scale numerical computation

• Very large-scale data processing

1.4 Project members and their roles

• J. J. Molina: ML for Soft Matter

• H. Shiba: HPC support

• T. Shimokawabe: HPC support

• R. Yamamoto: Soft Matter theory

• T. Taniguchi: MSS for polymers

• M S. Turner: Soft Matter Theory

• T. Sato: MSS for polymer flows

• D. Mayank: Polymer simulations

• S. Miyamoto: ML/MSS for polymers

• X. Yuan: Polymer simulations

• T. Ueno: ML for polymers

• M. Ohta: MSS for polymers

• K. Ogawa: ML for flow inference

• S. K. Schnyder: Optimal control for ac-

tive matter

• K. Sankaewtong: Optimal ML for active

matter

• M. Lynch: ML for optimal control

• A. C. Meneses: Active matter simula-

tions
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2 Purpose and Significance of the

Research

Soft Matter systems are crucial for mod-

ern technologies. To create better, more

energy-efficient, and robust materials re-

quires that we be able to understand and

control their properties. However, Soft Mat-

ter materials are particularly complicated,

as they are characterized by a hierarchy

of length- and time-scales, which severely

limits any theoretical descriptions. This

leaves computer simulations as the preferred

way to study/probe these systems. For

this, multi-scale / coarse-grained descrip-

tions have shown great promise, but they re-

main incredibly expensive. Thus, the goal of

this project is to develop (physics-informed)

machine-learning methods that can enhance

and/or supplement current simulation meth-

ods. We focus on flowing soft matter, along

3 themes (A, B, C).

(Theme A) The purpose is to under-

stand the flow of entangled polymer melts,

which is crucial to develop more efficient

and environmentally friendly materials. For

this, we should understand the micro/macro

coupling. To avoid Multi-Scale Simulation

(MSS) that directly couple these degrees of

freedom, we aim to learn the constitutive re-

lations. This year we worked to improve the

robustness of the learning and apply it to

complex flows.

(Theme B) The purpose is to understand

Stokes flows, inherent to small length-scales

(e.g., biological flows) and/or high viscosity

fluids (e.g., high-molecular weight polymers).

To replace traditional methods, which can-

not be directly applied to experimental set-

tings, we developed a probabilistic Stokes

Flow framework. This year, we worked to

extend the method to 3D, in order to ana-

lyze experimental data, e.g., particle-image

velocimetry (PIV) measurements.

(Theme C) Active systems, composed of

agents capable of consuming energy to per-

form work, are ubiquitous in biology and en-

gineering. The goal of this project is to un-

derstand how swimming particles can learn

to use local hydrodynamic signal to perform

useful work. This year we focused on achiev-

ing robust flocking behavior.

3 Significance as JHPCN Joint

Research Project

The goal of this project is to develop

Machine-Learning methods to simulate flow-

ing Soft Matter. We have focused on three

such problems: (A) entangled polymer melts,

(B) inferring Stokes flows, and (C) learning

navigation strategies in complex flows. The

training, learning, and validation for each

of these problems requires considerable com-

puting resources. For example, (A) the full

MSS of entangled polymers, needed to val-

idate our ML solution, requires simulations

with O(108) polymer chains; (B) the Stokes

flow inference of 3D flows requires a GP re-

gression with O(106) training points, which is

only possible on high-performance GPU clus-

ters. Likewise, the Reinforcement Learning

used to train a swimmer to navigate complex

flows requires expensive fluid/particle simu-

lations.
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4 Outline of Research Achievements

up to FY2022 (Only for continuous

projects)

For theme (A), we developed and imple-

mented a ML method to learn the con-

stitutive relation of polymer melts with

memory, first using a non-entanglement

model, then learning the Doi-Takimoto en-

tanglement model. We also included the

stretch/orientation induced reduction of fric-

tion in the Doi-Takimoto model, needed to

account for the strain hardening under fast

elongational flows. Finally, we ported the

non-interacting polymer models to GPU us-

ing OpenACC and CUDA. For theme (B),

we established the proof-of-concept of our

probabilistic Stokes flow solver for simple

2D flows. For theme (C) we developed a

reinforcement-learning (RL) protocol, cou-

pled with direct numerical simulations, to

teach a single swimmer to navigate a non-

uniform flow using local signals coupled with

externally applied torques/rotations.

5 Details of FY2023 Research

Achievements

5.1 Learning Constitutive Relations of Entan-

gled Polymer Melts

We have extended our Gaussian-Process

(GP) learning method to predict gen-

eral/complex flows of well-entangled polymer

melts [4,6,7]. In particular, we have extended

the method to allow for multi-deformation

modes and satisfy the principle of material

objectivity. For this, the constitutive rela-

tion for the stress is now assumed to be a

function of the stress σ and the strain rate

D = (κ + κT )/2 (κ = ∇u the velocity

gradient), i.e., σ̇ = σ̇(σ,D). Simulations

for constant strain-rate shear (rate γ̇) and

planar elongational (rate ϵ̇) deformations are

performed to generate the time-series of the

stress for the training data. From this, we

estimate the time-derivative of the stress σ,

and learn the appropriate constitutive rela-

tion by placing a GP prior on σ̇ ∼ N (µ,K)

and conditioning on the training data. This

learned constitutive relation can then be used

within macroscopic Smooth-Particle Hydro-

dynamics (SPH) flow simulations. In con-

trast to previous work, the numerical integra-

tion of the constitutive relations is performed

in the material frame of the Lagrangian SPH

particles. For this, the σ and D tensors

are rotated from lab coordinates into mate-

rial coordinates, as dictated by the rotational

strain-rate W = (κ− κT )/2.

This extended method has been used to

perform flow simulations for a 4 : 1 : 4 con-

traction expansion channel using the coarse-

grained Doi-Takimoto polymer entanglement

model. To generate the training data we per-

formed 40 independent pure-shear and elon-

gational deformation simulations with 104

chains, and randomly chose 3 × 103 points

in the (σ,D) constitutive equation space for

the GP learning. SPH simulation results us-

ing the ML constitutive relation are shown in

Fig. 1 and compared to full-MSS (using mi-

croscopic simulators with 104 chains inside

each SPH particle). We obtain very good

overall agreement, with the benefit that the

ML results are considerably smoother.
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Fig. 1 SPH simulation snapshots for

polymer flow through a contraction ex-

pansion channel, using (I) ML consti-

tutive relations and (II) full-MSS with

Doi-Takimoto simulators. (a) Velocity

stream-lines and (b) principle stress dif-

ferences PSD=
(
4σ2

xy + (σxx − σyy)
2
)1/2

,

color-coded by their respective magni-

tudes.

We have shown that it is possible to learn

the constitutive relation for the Kremer-

Grest Coarse-Grained (KGCG) model, which

includes the chain-chain interactions and cor-

relations absent in the Doi-Takimoto model

[4]. For this, we considered only uniax-

ial elongational deformations (e.g., modeling

melt-spinning processes). Compared to stan-

dard MSS, our machine-learned constitutive

relation resulted in a speed-up of three or-

ders of magnitude. To improve our micro-

scopic understanding, and hopefully explain

the superior properties of natural rubber

compared to synthetic rubber, we have also

performed extensive simulations for the for-

mation of physical junction points between

peptides/proteins and terminal groups [2,5].

5.2 Learning the Stokes Equation

We have extended our physics-informed

probabilistic/Gaussian Process (GP) Stokes

framework to generic 2D/3D flows. Our

method allows for missing and/or partial in-

formation, making it an ideal candidate to

analyze PIV measurements. We refer to

this method as Stokesian Processes (SP).

Briefly, we use all known information, includ-

ing velocity v and pressure p measurements,

together with knowledge of the underlying

physics, i.e., the Stokes f ≡ ∇p− µ∇2u = 0

and continuity equation s ≡ ∇ · u = 0, to

compute the posterior probability distribu-

tion for the unknown variables (e.g., veloc-

ity). This is done by expressing the corre-

lations between the fields of interest, u, p,f

and s, in terms of only u and p, and incor-

porating them into the GP correlation matri-

ces. In this way, we ensure that the physics is

exactly satisfied (on average). Furthermore,

we note that we do not require knowledge

of the absolute pressure field p, information

on pressure differences is enough, in fact, the

method also works without pressure informa-

tion. We have implemented our SP frame-

work in a Python/JAX module, which al-

lows us to easily extend and customize our

code, without sacrificing speed/accuracy, as

we benefit from JAX’s builtin automatic-

differentiation and JIT compilation support.

This work has been published in Ref.[3],

where we tested the method on a bench-

mark flow problem: 2D pressure driven flow

past a sinusoidal channel. We obtain excel-

lent agreement with respect to the “exact”
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Fig. 2 Evolution of training loss and ve-

locity predictions for (top) SP and (bot-

tom) PINN, for pressure driven flow in a si-

nusoudal channel. Insets show the vy pre-

dictions (symbols are the randomly sam-

pled training data). Adapted from J.J.

Molina et al., Mach. learn.: sci. technol.

4, 045013, 2023 (CC BY 4.0) [3].

Finite-Element Method calculations (using

the FEniCSx computing platform). In par-

ticular, our method is able to infer physi-

cally meaningful solutions from sparse/noisy

measurements, as required for analyzing PIV

data. Compared to alternative ML meth-

ods, i.e., Physics-Informed Neural Networks

(PINN), ours provides more robust predic-

tions and is faster to train (see Fig.2). To il-

lustrate this, consider that for the sample 2D

problem of Ref.[3], on a single NVIDIA A100

GPU (Wisteria/BDEC-01), using Ntrain ≃
103 training points, Ntest ≃ 105 test points,

the SP calculations require ∼ 1 min, whereas

the PINN needed ∼ 6 hours to achieve a sim-

ilar level of accuracy! Furthermore, the SP

is guaranteed to exactly reproduce the train-

ing points, but no such guarantee is possible

for PINNs. This shows the promise of our

approach.

Fig. 3 Reconstruction of the 3D veloc-

ity field for flow past a fixed particle. (a)

SP training points for the governing equa-

tions (489 × 4 points) and the velocity

(151 points), red and black symbols, re-

spectively. (b) vy as a function of (x, y)

from the exact solution, SP prediction, and

naive GP prediction, for x−y planes at two

different heights z0 and z1. Adapted from

K. Ogawa, Master Thesis, Kyoto Univer-

sity (2024).

We have extended our method to 3D sys-

tems and validated the results. For this,

we considered flow past a fixed sphere, for

which analytical solutions are available. To

limit the calculation time, we considered
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training/test data in one octant around the

sphere. To mimic PIV experiments the ve-

locity training data is taken from two x/y

planes, whereas the training data for the gov-

erning equations is uniformly sampled (see

Fig. 3). Our method is able to provide robust

predictions/interpolations of the full 3D ve-

locity field. This is in contrast to naive (non

physics-informed) GP regression, which only

provides reliable predictions very close to the

training points.

Fig. 4 Compute time for GP inference

as a function of the number of train-

ing points. Results of our BBMM im-

plementation, GPytorch (BBMM), and a

Cholesky decomposition. Choleksy results

are not available for N > 104 due to mem-

ory constraints. K. Ogawa, Master Thesis,

Kyoto University (2024).

To allow for large-scale 3D flows, we have

implemented the Black-Box Matrix-Matrix

(BBMM) algorithm pioneered by GPyTorch,

which allows for exact GP inference on mil-

lions of training points, and parallelizes to

muli-GPU architectures (J. R. Gardner et al.,

arXiv:1809.11165, 2018). This posed signifi-

cant difficulties, as it required us to rewrite

the algorithm in terms of pure/stateless func-

tions, to be JAX-compatible. We tested

our implementation on a simple GP regres-

sion problem: learning a 1D sinusoidal func-

tion. We validated our BBMM implementa-

tion against GPytorch’s BBMM, as well as a

standard Cholesky decomposition. As shown

in Fig. 4, running on a single NVIDIA A100

GPU (Wisteria/BDEC-01), our JAX imple-

mentation can be faster than GPyTorch, at

least for large problems.

5.3 Learning Efficient Swimming Strategies

Fig. 5 Simulation snapshots for “smart”

microswimmers tasked with maximizing

(left) polar order and (right) vortex order.

We have extended and improved upon our

combined RL/Direct Numerical Simulation

approach to solve for the optimal control

of swimmers navigating complex flows [1].

For this, we have used Deep Q-Learning

(as implemented in Pytorch), coupled to di-

rect numerical simulations of spherical swim-

ming particles, within the canonical squirmer

model (as implemented in Kapsel). We train

the swimmers to navigate non-uniform flows

using local hydrodynamic signals. As in our

previous work, the swimmers possess surface

sensors that measure hydrodynamic force sig-

nals, which they use to select an optimal

strategy (i.e., rotation). However, in contrast
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to our previous model, we now include the

torque free constraint on the swimmers by us-

ing a squirmer that is capable of autonomous

rotations around its body axes (no longer re-

quiring an external torque). We have trained

a collection of swimmers to maximize various

order parameters, targeting different types of

collective motion. In this way, we are able

to obtain non-trivial collective behavior (see

Fig. 5), for different types of swimmers.

6 Self-review of Current Progress and

Future Prospects

For theme (A), we have successfully im-

proved upon our learning method by incor-

porating the principal of material objectiv-

ity. This allows us to achieve good quanti-

tative performance on complex 2D flow sim-

ulations, as compared against full MSS. For

theme (B), we have extended our probabilis-

tic Stokes flow framework to 2D/3D, incor-

porating stress and force inferences. Fur-

thermore, we have shown that our method

outperforms alternative ML approaches, i.e.,

Physics-Informed Neural Networks. We have

also implemented the BBMM algorithm used

by GPytorch for large-scale GP inference,

but the performance is still sub-optimal. For

theme (C), we have successfully developed a

Reinforcement Learning protocol capable of

teaching force/torque free swimmers to col-

lectively navigate non-homogeneous flows us-

ing only local hydrodynamic signals.

Our research plan for FY2024 will continue

to develop these themes. For theme (A), we

will improve our learning method to provide

fast and quantitative predictions for complex

3D flows of entangled polymer melts. Fur-

thermore, we will continue with our effort to

port the code entirely to GPUs. This will al-

low us to perform simulations of the complex

processing flows used in industry. For theme

(B), will investigate why the BBMM method

does not provide any significant speedup on

our specific physics-informed GP regression

(it’s currently slower than a Cholesky based

calculation). Our goal is to allow for large

scale 3D systems with moving boundaries to

analyze PIV data. Finally, for theme (C) we

will continue to investigate how ML can be

used to solve complex Optimal Control prob-

lems.
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