jh230029

3D プリンタ積層造形の高精度材料組織予測のための 大規模フェーズフィールド格子ボルツマン計算

高木 知弘 (京都工芸繊維大学)

概要

粉末床溶融結合法を採用した金属積層造形における高精度な材料組織予測を可能とする数値シミュレ ーション法の開発を行う.「実用性」と「挑戦性」の観点から3つの課題A, B, Cを設定し, 時空間ス ケールの異なる計算法開発を行った.「実用性」の観点から,様々なスキャンストラテジーを対象とす る多結晶 multi-phase-field (MPF)シミュレーション法の開発を行った【課題A】.「挑戦性」の観点か らは,溶融池の液相流動計算結果を用い,デンドライト/セル成長を高性能 phase-field 計算によって 高精度に求めるブリッジング法を開発した【課題B】. さらに,気相と溶融池の流動とそれに影響を受け る多結晶組織を評価する,多結晶 MPF 法と混相流 MPF 法を連成したモデル開発を行った【課題C】.

- 1. 共同研究に関する情報
- (1) 共同利用・共同研究を実施している拠点名東
 京工業大学 学術国際情報センター
- (2) 課題分野 大規模計算科学課題分野
- (3) 共同研究分野(HPCI 資源利用課題のみ)超大規模数値計算系応用分野

(4) 参加研究者の役割分担

高木 知弘 (京都工芸繊維大学・機械工学系): 研究全体の総轄,モデル構築,考察,論文執 筆.

青木 尊之 (東京工業大学・学術国際情報セン ター): 大規模 GPU 計算の総轄, 並列 GPU コ ードのチューニング.

坂根 慎治 (京都工芸繊維大学・機械工学系): 並列 GPU コード開発,モデル構築,計算の実 行,データ処理用コードの作成,データ処理 &考察,論文執筆.

光山 容正 (京都工芸繊維大学・工芸科学研究 科):モデル構築,計算の実行,データ整理. 山中 波人 (京都工芸繊維大学・工芸科学研究 科):計算の実行,データ整理.
高橋 侑希 (京都工芸繊維大学・工芸科学研究
科):並列 GPU コード開発,計算の実行,データ整理.
池田 幸之介 (京都工芸繊維大学・工芸科学研究科):モデル構築,並列 GPU コード開発, 計算の実行,データ整理.

2. 研究の目的と意義

本研究では、金属積層造形プロセスを phase-field (PF)法によって完全に再現する高 性能計算法の確立を目的とし、世界一の数値 シミュレーション研究を目指す.令和3年度 から3年間を予定した継続課題であり、今年 度はその最終年度であり、以下の3課題を実 施する.

【課題 A】多結晶 multi-phase-field (MPF)シミ ユレーション・・・・・・・実用性 【課題 B】流動とデンドライト/セル成長の ブリッジングシミュレーション・・・挑戦性 【課題 C】全現象を考慮したシミュレーショ ン・・・・・・・・挑戦性 積層造形における完全なる組織予測シミ

ュレーションは未だ行われていない. 特に国

内では皆無といえる.これを世界に先駆けて 可能とし、当該分野に強烈なインパクトを与 えることが本研究の一番大きな意義である. この研究によって、シミュレーションによる 積層造形の組織予測が可能となり、実験研究 との融合、機械学習の併用によって、将来的 に材料組織を最適化するためのプロセス設 計が可能となる.以上のように、本研究では これまでにない高精度の組織予測を達成し ようとしており、将来的にプロセス設計を見 込んだ 3D プリンタ分野にイノベーションを 起こす極めて意義深い研究である.

3. 当拠点の公募型共同研究として実施した意義

本共同研究では, PF 法による材料組織予測 に関する数値研究を継続的に進めている.こ の中で, GPU スパコン TSUBAME の利用に よって PF 計算の極めて良好な高速化を達成 可能であることを示した. さらに、複数 GPU 並列計算によって,世界的にまだどのグルー プも達成できない時空間スケールでの材料 組織形成シミュレーションを可能とした.こ れらの研究成果は国内外で極めて高く評価 されており、本研究を発展させることは計算 材料学の更なる発展に大きく寄与し,また日 本の研究力を世界に示すことができる.この 研究は複数 GPU を用いた大規模計算によっ て初めて達成できるため, GPU スパコン TSUBAME の利用が不可欠である.加えて, 本研究グループは, PF 法, 材料組織学, 流体 工学, HPC を牽引する研究者によって構成さ れ、日本発の世界一の研究が可能となる.以 上のことから,本研究を当拠点公募型共同研 究として実施した意義は極めて高い.

4. 前年度までに得られた研究成果の概要

前年度までの2年間において,主に2つの スケールからのアプローチを試みた.一つは, 様々なスキャンストラテジーの結晶粒スケ ールの組織予測を可能とする数値計算法の 構築. もう一つは,溶融池の液相流動を高精 度に予測して,その影響をうける結晶粒スケ ールの組織予測を可能とする計算法の構築 である.以下に二つの計算法の概要と成果を 示す.

4.1 複数層・複数トラックのビーム走査

様々なスキャンストラテジーにおいて形 成される結晶粒スケールの組織を効果的に 予測する手法の開発を目指し,温度と溶融池 内の液相流動を解かずに効果的に組織予測 を行うことのできる MPF シミュレーション 法の開発を行った.図1にシミュレーション 例を示す[1]. 本シミュレーションでは, 316L 鋼に対して4層・4トラックの双方向走査を 行った.なお、モデルとしては移動点熱源の 温度の理論解を与える Rosenthal の式を, double-obstacle ポテンシャルを用いた MPF に 導入し, MPF 方程式のみを解いている. なお, 粉末床は多結晶層として表現した.図1より, 溶融池底の結晶方位を引き継いで概ね界面 法線方向に成長する,結晶粒のエピタキシャ ル成長が確認できる.また、これらの結晶粒 は特徴的な曲線を有する粒形態を呈してい ることがわかる.

Fig. 1 Temporal changes of material microstructures during laser scanning with four-layer and four-track. [1]

図2は、図1の結晶粒の中で大きく成長し た、ある一つの結晶粒の成長過程を示したも のである.第1層のビーム走査時、この粒は 表面に位置し、横方向にカーブを描くように 成長している.第2層の走査からは上方向に 成長し、角を持つような形態となり、第3層 と第4層の走査で角部がさらに成長する様子 が確認できる.このように、エピタキシャル 成長による特徴的な成長が粒単位で高精度 にみることができる.

Fig. 2 Morphological change during epitaxial growth of a grain in a simulation shown in Fig. 1.

4.2 溶融池流動ダイナミクスと粒成長

金属 AM では材料内に大きな温度勾配が 生じ,溶融池の表面エネルギーの温度依存性 によってマランゴニ対流が生じる.また,レ ーザーの反跳力と液相の蒸発によってキー ホールが形成し,溶融池内の液相流動を複雑 化し,それに影響を受けて材料組織形態が変 化し,材料内に気泡が取り残され欠陥となる. このような液相流動と材料組織の複雑な相 互作用を,混相流を表現する MPF モデルを連成 して表現することを試みた.

混相流 MPF モデルは,先に構築した保存 型 Allen-Cahn MPF モデル[Computers & Fluids, 178 (2019) 141-151]の保存性をさらに高め[2], これに表面エネルギーの空間勾配による流 体力を組み込み,温度場と連成させることで, 図 3(a)のようなマランゴニ対流を再現した. 界面エネルギーは温度の上昇とともに線形 に低下すると設定しており,界面中央部から 外側に向かって流動が生じていることが確 認できる.また,反跳力を導入した結果を図 3(b)に示す.中央部に窪みが形成されている ことが確認できる. さらに,気相の蒸発を入 れた結果を図 3(c)に示す.図 3(b)に比べて窪 みが深くなっていることが確認できる.以上 のように,混相流 MPF 法を用いることで, 表面張力の温度依存性の導入によるマラン ゴニ対流,反跳力と液相蒸発によるキーホー ル形成の再現が確認できた.

Fig. 3 Simulation results of melt pool flow and gas-liquid interface migration caused by (a) Marangoni force, (b) Marangoni force and recoil pressure, (c) Marangoni force, recoil pressure, and evaporation.

図 3 の固気液混相流を表現する MPF モデ ルに、多結晶凝固を表現する MPF モデルを 連成し、ビーム走査の一連のプロセスを再現 するモデルを構築した.図4にシミュレーシ ョン例を示す.図4の左図が組織変化、右図 が温度分布変化である.計算コストの問題で ビーム出力を低く抑えたシミュレーション を行っているため、キーホールの形成は確認 できないが、非対称な溶融池形状、溶融池表 面の窪み、溶融池後方での多結晶凝固と特徴 的な曲線を有する結晶粒の再現を確認する ことができる.本シミュレーションでは、粉 末床は用いていないが、粉末床を用いると計 算が不安定する課題が残っている.

Fig. 4 Simulation result of material microstructure evolution (left side) and temperature change (right side) during laser scanning on a polycrystalline substrate.

5. 今年度の研究成果の詳細

5.1 多結晶 MPF シミュレーション(課題A) 本課題は,実用性を重視したシミュレーシ ョンを可能とするものであり,特に様々なス キャンストラテジーを再現可能な手法の構 築を目指している.昨年度投稿していた論文 が出版され[1],これを基礎とする研究を進め た.

今年度は、文献[1]で構築した複数層・複数 トラック走査シミュレーションをより効率 的に行うために,非常に大きな領域に対して 溶融池近傍のみを計算の対象とする計算法 の開発を行った.図5は計算例の(a)全領域と (b)計算領域である. 図 5(a)に示す 1280×2304 ×256 格子が全領域であり、これに対して図 5(b)に示す計算領域は 320×640×256 格子と 非常に小さく, 全領域を対象とする計算より も1/8のコストで計算を完了した.作成した 手法を用いて、レーザー出力 120 W で x-x ス キャンと x-y スキャンの二種類のスキャンス トラテジーの計算を行った.格子サイズは *Δx* = 0.3125 μm とし, x-x スキャンでは 1792× 2304 × 640 格子で x-y スキャンでは 2304 × 2304 × 640 格子を全領域に設定した.2 つの スキャンストラテジーで領域サイズが異な るのは、周期境界設定の可不可に依存する. これに対して計算領域は両スキャンストラ テジーとも 1792 × 2304 × 640 格子とし, TSUBAME3.0 の 48 GPU を用いて 2.08 × 10⁶ stepsの計算に対して約73時間で計算を完了 した. Fig. 6 に計算終了時のそれぞれの固体 表面と表面から30 µm下における断面を示す. 計算結果から,実験観察でも見られているス キャンストラテジーに依存した断面組織を 確認できた.

現在は, x 方向と y 方向への熱源の走査に 限定されているが,任意方向走査に拡張中で あり,近いうちに任意のスキャンストラテジ ーを可能とする予定である.なお, Fig. 6 の 結果に関しては現在論文を執筆中である.

Fig. 5 Polycrystalline structures for (a) overall domain and (b) computational domain around melt pool.

Fig. 6 Material microstructures on (a)(c) surface and (b)(d) cross section 30 μ m below the surface for (a)(b) x-x and (c)(d) x-y scanning strategy.

(a) Macro-scale thermal-fluid simulation of laser scanning

Fig. 7 (a) Temperature around melt pool in the macroscale laser scanning simulation, and (b) columnar cell growth in the large-scale PF solidification simulation and (c) enlarged view of obtained internal cell structure.

5.2 熱流動と組織のブリッジング(課題 B)

本課題では,熱源走査によるマクロ場の熱 流動解析結果をミクロ場の PF 法による組織 予測に用いるブリッジングシミュレーショ ン法を開発した.マクロ場の熱流動計算結果

は、シンガポール国立大の Yan 助教のグルー プから譲り受け、その温度場を入力として柱 状セル組織発展の大規模シミュレーション を行った. ここで, PF モデルとしては二元合 金の急冷凝固に対する定量モデルを用い,計 算を高速化するために AMR を複数 GPU 実 装した parallel-GPU AMR を採用した. Inconel718 合金のレーザー溶融および凝固プ ロセスを対象としてシミュレーションを行 った結果を Fig.7 に示す. Fig.7(a)の溶融池底 に黒枠で PF 計算の対象領域を示し、これが Fig. 7(b)に対応する. PF 計算の領域サイズを AMR の最小格子幅 Δxmin に対して 768Δxmin × 12288 Δx_{\min} × 6144 Δx_{\min} と設定し, TSUBAME3.0 の 256 GPU を用いて約 18 時間 で計算を完了した. なお,本計算では出力フ ァイルサイズが膨大になるため,計算終了後 のポスト処理 (Python を用いた均一格子デー タへの変換,一部領域のデータ抽出, Pvpython による可視化処理など)を TSUBAME 上で実 施することにより, データ処理におけるロー カルマシンへのデータ転送量を大幅に削減 した. Fig. 2(b)に PF 計算中の固液界面発展お よび固相領域断面の溶質濃度分布を示す.本 計算では,溶融池底から温度勾配方向に沿っ て柱状セルが成長する様子が確認できた.こ の計算より得られた組織(Fig. 2(c))のセル間 隔を測定すると、およそ 0.22 - 0.28 µm であ った.これは、同様のプロセス条件における 実験組織のセル間隔(0.27 μm)とよく一致し ており,本研究で開発した手法が高精度なミ クロ組織予測手法であることを実証してい る. 現在, 論文を執筆中であり, 国際学術雑 誌 Additive Manufacturing へ投稿予定である.

5.2 液相流動と組織予測の連成(課題C)

本課題は,熱源の走査による溶融池内の液 相流動と気相の流動,領域全体の温度場,お よび凝固組織発展を同時に再現するシミュ レーションモデルを開発した.

Fig. 8 Temporal changes of molten pool shape (upper) and temperature (lower) in twodimensional laser scanning simulation at (a) 5×10^{5 th step, (b) 3×10^{6 th step, and (c) 5×10^{6 th step.

昨年度の Fig. 4 の計算において計算が不安 定化する問題を解決し, Fig. 8 のような粉末 及び多結晶基板上への2次元レーザー走査シ ミュレーションを可能とした.この結果, Fig. 8 に示すような溶融不足による欠陥形成や, 多結晶粒のエピタキシャル成長の再現に成 功した.一方で,計算コストが高い課題は残 っており,2次元計算でも熱源出力の高い場 合に生じるキーホールの形成には至らなか った.そのため,本モデルを直接3次元化し ても計算コストの面で希望する計算には至 らないだろうと判断した.なお, Fig. 8 の結 果に関しては現在論文を執筆中である.

3 次元計算を大規模に実施するために,流 動計算を溶融池内に限定し,格子ボルツマン 法を用いて解く手法に切り替えた.そして, 複数 GPU 並列コードを作成し,3 次元大規模 計算を試みた.ここで,溶融池内の液相流動 計算において,気液界面は自由表面として圧 力境界条件を与え,固液界面には interpolated bounce back scheme を用いて滑りなし条件を 与えた.

Fig. 9 Molten pool shape and temperature distribution at (a) $1 \times 10^{4\text{th}}$ step and (b) $3 \times 10^{4\text{th}}$ step in a three-dimensional laser irradiation simulation.

Fig. 10 Temporal changes of molten pool shape and temperature at (a) 1×10^{4th} step and (b) 5×10^{4th} step in three-dimensional laser scanning simulation.

SUS316L 基板へのレーザー照射シミュレ ーション結果を Fig.9に示す.溶融池の形状 と温度分布を示しており,黒色の線は固液界 面である.計算格子は1µm,計算領域は512 µm³,レーザー出力は120Wである.Fig.4よ り,レーザー照射による溶融池の拡大と反跳 力によるキーホール形成の再現が確認でき た.次に,レーザー走査シミュレーション結 果を Fig. 10に示す.計算領域は512×384× 256µm³でレーザー走査速度は1.0 m/s であ る.レーザー走査による溶融凝固が確認でき る.格子ボルツマン法を導入したことで,計 算の大規模高速化を達成し,2次元計算では 達成できなかった3次元レーザー走査シミュ レーションにおけるキーホール形成を確認 した.今後は本モデルに多結晶体を導入する ことで,溶融池の流動の影響を受ける材料組 織予測を可能とする予定である.

6. 進捗状況の自己評価と今後の展望

3 スケール(課題 A, B, C)からの材料組織 予測シミュレーション手法のモデル化と高 性能計算法の開発を進めた. 今年度で予定し ていた3年間の継続研究期間が終了したが、 当初予定していた方向性から変化があった. 理由としては,金属積層造形の温度条件が非 常に厳しく、マルチスケール計算が必須のテ ーマであることを強く認識したためである. 課題 A のスキャンストラテジーに依存した 組織予測シミュレーションは、小さく見積も っても数 mm スケールの計算領域を必要と し、課題 B のデンドライト/セル組織予測は nm スケールの格子を必要とした. 令和6年 度は HPCI 課題として採択されており、本研 究を継続する. 当初予定を完全に達成できた とは言えないが,本格的な金属積層造形の組 織予測シミュレーション研究を開始すると いう点において、この3年間で得られた成果 は大きいと考えている.3つのスケールにお いて,課題 C の熱流動計算の結果を課題 A と課題 B に用いるため, 現在, 特に課題 C の 熱流動計算シミュレータ開発を急いでいる. これまでにない高精度な溶融池内の熱流動 計算を行い、その結果を課題 A と課題 B の シミュレーションに用い, 高精度な結晶粒ス ケールおよびデンドライト/セルスケールの シミュレーションを行い, いずれのスケール においても世界一のシミュレーション研究 を達成したいと考えている.

7. 研究業績

(1) 学術論文 (査読あり)

[1] T. Takaki, Y. Takahashi, S. Sakane, Multi-Phase-Field Framework for Epitaxial Grain Growth in Selective Laser Melting Additive Manufacturing with Multi-Track and Multi-Layer, Materials Transactions 64(6) (2023) 1150-1159.
[2] S. Aihara, N. Takada, T. Takaki, Highly conservative Allen–Cahn-type multi-phase-field model and evaluation of its accuracy, Theoretical and Computational Fluid Dynamics 37 (2023) 639–659.

 (2) 国際会議プロシーディングス (査読あり) なし.

(3) 国際会議発表(査読なし)

[1] K. Ikeda, S. Sakane, T. Takaki, Multi-phase-field modeling to compute material microstructure evolutions affected by liquid flows during powder bed fusion, The 11th Pacific Rim International Conference on Advanced Materials and Processing (PRICM11), November 19-23, 2023, Jeju, Korea.
[2] Y. Takahashi, S. Sakane, T. Takaki, A multi-phase-field framework for predicting material microstructures formed by different scanning patterns in powder bed fusion, The 11th Pacific Rim International Conference on Advanced Materials and Processing (PRICM11), November 19-23, 2023, Jeju, Korea.

[3] Y. Takahashi, S. Sakane, T. Takaki, Multiphase-field framework for predicting material microstructures formed by various scanning strategies in powder bed fusion, The 1st International conference on Creation of Materials by Superthermal Field 2023 (CMSTF2023), November 15-17, 2023, Osaka, Japan.

[4] K. Ikeda, S. Sakane, T. Takaki, Multi-phasefield model and 2D simulation of melt pool flow and material microstructural evolution during powder bed fusion, The 1st International conference on Creation of Materials by Superthermal Field 2023 (CMSTF2023), November 15-17, 2023, Osaka, Japan. [5] S. Sakane, L. Wang, W. Yan, T. Takaki, Prediction of three-dimensional solidification microstructure in a molten pool during L-PBF process: direct coupling of micro-scale phase-field and meso-scale thermal fluid flow simulations, The 1st International conference on Creation of Materials by Superthermal Field 2023 (CMSTF2023), November 15-17, 2023, Osaka, Japan.

[6] T. Takaki, Multi-phase-field modeling of grain growth and multiphase flow in additive manufacturing, 10th International Congress on Industrial and Applied Mathematics (ICIAM 2023), August 20-25, 2023 Tokyo, Japan.

(4) 国内会議発表(査読なし)

高橋 侑希,坂根 慎治,高木 知弘,Multiphase-field 法による金属積層造形でのスキャンストラテジーの違いによる組織評価,第
 187回春季講演大会,2024年3月13–15日,東京理科大学 葛飾キャンパス.

[2] 池田 幸之介,坂根 慎治,高木 知弘,粉
末床溶融結合法の溶融池流動と組織発展の
multi-phase-field シミュレーション,日本機械
学会 第36回計算力学講演会(CMD2023),2023
年 10月 25-27 日,豊橋商工会議所.

[3] 高橋 侑希, 坂根 慎治, 高木 知弘, 金属 積層造形における様々な走査パターンの組織 予測を可能とする multi-phase-field 計算法の 開発, 日本機械学会 第 36 回計算力学講演会 (CMD2023), 2023 年 10 月 25–27 日, 豊橋商工 会議所.

[4] 高橋 侑希, 坂根 慎治, 高木 知弘, 金属 積層造形における複数層・複数トラック走査 の材料組織予測を可能とする高性能 multiphase-field 計算法の開発, 超温度場夏の学校 若手研究交流会, 2023 年 9 月 24–25 日, ホテ ルサンルートソプラ神戸.

[5] 池田 幸之介, 坂根 慎治, 高木 知弘, Multi-phase-field 法を用いた金属積層造形に 学際大規模情報基盤共同利用·共同研究拠点 2023 年度共同研究 最終報告書

おける液相流動と組織発展の数値シミュレー ションの検討, 超温度場夏の学校 若手研究 交流会, 2023 年 9 月 24-25 日, ホテルサンル ートソプラ神戸.

[6] 高木 知弘,池田 幸之介,坂根 慎治,PBF における溶融池内の液相流動と組織発展の multi-phase-field モデリング,日本金属学会 2023 年秋期(第 173 回)講演大会,2023 年 9 月 19-22 日,富山大学五福キャンパス.

[7] 高木 知弘,高橋 侑希,坂根 慎治,高性能 phase-field 計算による金属積層造形における粒成長評価,第28回計算工学講演会,2023年5月31-6月2日,つくば国際会議場.

[8] 池田 幸之介,坂根 慎治,高木 知弘, Multi-phase-field 法を用いた粉末床溶融結合 法の数値シミュレーション法の検討,第28回 計算工学講演会,2023年5月31-6月2日,つ くば国際会議場.

- (5) 公開したライブラリなど なし.
- (6) その他(特許, プレスリリース, 著書等) なし.