
1

jh230009

Hierarchical Low-Rank Approximation Methods on

Distributed Memory and GPUs

Rio Yokota（Tokyo Institute of Technology）

Abstract

The purpose of this research is to develop a scalable and highly optimized open source

library for hierarchical low-rank approximation of dense matrices. During the previous

JHPCN project we have extended the H-matrix code to perform not only matrix-vector

multiplications, but also matrix-matrix multiplication, LU factorization, and QR factoriza-

tion.We have also extended the parallelization to support not only OpenMP and MPI, but

also batched GPU kernels and task-based parallelization. The four main goals for the fis-

cal year 2022 are: 1) Application of the runtime system PaRSEC developed at UTK to

our H-matrix library, 2) Application of the LDL factorization to find the k-th eigenvalue

in electronic structure calculations, 3) Extending the O(N) H-matrix LU factorization to

multi-GPU, 4) Completing the GPU implementation for BLR-QR in the HACApK library,

5) BLR tridiagonalization for computing the full eigenspectrum. We were able to achieve

our research goal for all 5 objectives. This year’s results were published in top journals like

IJHPCA and top conferences such as ICPP.

1 Basic information

1.1 Collaborating JHPCN centers

• Hokkaido University

• The University of Tokyo

• Tokyo-tech

• Nagoya University

• Kyoto University

• Osaka University

1.2 Theme area

• Large-scale computational science

1.3 Research area

• Very large-scale numerical computation

1.4 Project members and their roles

Rio Yokota (Overall coordination)

Ichitaro Yamazaki (Overall advise)

Akihiro Ida (Lattice H-matrix)

Takeshi Iwashita (Electromagnetics App.)

Takeshi Fukaya (QR)

Satoshi Ohshima (GPU optimization)

Kengo Nakajima (Preconditioning)

Toshihiro Hanawa (GPU optimization)

Tetsuya Hoshino (GPU optimization)

Tasuku Hiraishi (MPI)

Sameer Deshmukh (PaRSEC)

Muhammad Ridwan Apriansyah (QR)

Qianxiang Ma (Algorithm)



Progress Report for JHPCN Joint Research of FY 2023 2

Thomas Spendlhofer (Iterative Refinement)

Kai Okawa (Visualization)

Shukai Nakamura (CPU optimization)

Shota Nakamura (MPI)

Hiro Ishii (Hessian matrix)

Zhaoqing Wang (GPU optimization)

Cong Bai (Hessian matrix)

Clement Bazan (Fisher matrix)

Ishikawa Satoki (Auto-tuning)

Tomokazu Saito (FMM)

2 Purpose and Significance of the

Research

2.1 Purpose of Research

The purpose of this research is to develop

a scalable and highly optimized open source

library for structured low-rank approxima-

tion of dense matrices, e.g. H-matrix, H2-

matrix, HSS, HODLR, BLR. In this project

report we will simply call these various types

of structured low-rank approximations as H-

matrices. Such large dense matrices nat-

urally appear in electromagnetic, seismic,

quantum, and fluid simulations, in scientific

computing. Unlike their dense counterparts

which require O(N3) time and O(N2) mem-

ory, H-matrices can perform matrix multipli-

cation and factorization in O(N) time and

O(N) memory.

2.2 Significance of Research

Hardware architecture is now moving to-

wards low-precision arithmetic, backed by

the increasing demand from the machine

learning field. When such low-accuracy can

be tolerated, exact dense linear algebra op-

erations become unnecessary, and libraries

such as BLAS and LAPACK, which are at

the heart of HPC applications, can be re-

placed by hierarchical low-rank (H-matrix)

libraries that effectively do the same work

in linear time. There is still ample room

for investigation regarding the use of such

low-precision in scientific computing appli-

cations, where methods such as iterative re-

finement have recently gained interest. H-

matrices can be used as a scalable precon-

ditioner for such problems, and we aim to

quantify the advantage over existing state-

of-the-art methods in this JHPCN project.

Furthermore, batched operations on GPUs

are becoming popular and libraries such as

MAGMA and cuBLAS are providing low-

level functions that can process many small

dense matrix operations in large batches.

H-matrices can benefit greatly from such

batched dense linear algebra libraries, and in

doing so will be able to extract a large por-

tion of the performance of the latest GPU

and many-core architectures including Ten-

sor Cores. Since libraries like MAGMA and

CUBLAS are optimized to use Tensor Cores,

we do not have to do the implementation our-

selves.

3 Significance as JHPCN Joint

Research Project

Each member of this project has different ex-

pertise, all of which are essential for the de-

velopment and verification of a high perfor-

mance H-matrix library.

• R. Yokota’s group is currently devel-

oping a C++-based H-matrix code Ha-

trix that uses advanced C++ features to



Progress Report for JHPCN Joint Research of FY 2023 3

provide a collection of primitives for per-

forming H-matrix computation with hy-

brid parallelism for MPI, OpenMP, and

CUDA over half of the project members

are students in his group.

• A. Ida and T. Iwashita are developers

of HACApK – a hybrid MPI-OpenMP-

CUDA implementation of the H-matrix.

• T. Hiraishi has experience in load-

balancing for distributed memory H-

matrix codes.

• I. Yamazaki is the developer of dense lin-

ear algebra libraries such as MAGMA

and PLASMA.

• S. Oshima, T. Hanawa and T. Hoshino

have expertise in tuning solvers for

GPUs and Xeon Phi.

• K. Nakajima has expertise in parallel

preconditioned iterative solvers.

The combination of these expertise is neces-

sary for achieving the goals mentioned above.

There are a few existing H-matrix implemen-

tations, but they are limited to shared mem-

ory and have not been ported to GPUs. To

our knowledge, HACApK and HiCMA are

the only multi-GPU H-matrix codes avail-

able at the moment. This could only have

been done through a JHPCN international

collaboration between the experts in each

area.

4 Outline of Research Achievements

up to FY2022

Up to FY2022 we have tackled various

problems regarding hierarchical low-rank ap-

proximation and its parallel implementation.

There are various derivatives of hierarchi-

cal low-rank approximation methods such

as; BLR, HODLR, HSS, H-matrix, and H2-

matrix. We started from the most basic

variant – BLR, which uses low-rank off-

diagonal blocks, but not a hierarchical ma-

trix. We started with the most basic op-

erations such as matrix-vector and matrix-

matrix multiplication. This was extended

during FY2016 to LU factorization and im-

plemented in OpenMP and MPI.

• In FY2017, we extended the matrix for-

mat to more complex HSS and H-matrix

structures, and extended the implemen-

tation to GPUs for the matrix-vector

multiplication. We utilized batched

MAGMA operations to process the

matrix-vector multiplication efficiently

on GPUs.

• In FY2018, we further extended the im-

plementation of the LU factorization to

multiple-GPUs using a hybrid MPI +

OpenMP + CUDA code.

• In FY2019 we extended the H-matrix

code to H2-matrix by using a nested ba-

sis. We also used a runtime for H-LU on

GPU, but found that such runtimes like

StarPU and OmpSs incur too much over-

head. For the inner kernels, we ported

the QR decomposition to run on Tensor-

Cores, and implemented the QR decom-

position using the BLR matrix.

• In FY2020 we implemented the uni-

form basis BLR, and QR factorization on

TensorCores with error correction. We

also developed a Eigenvalue computa-



Progress Report for JHPCN Joint Research of FY 2023 4

tion based on BLR-QR, and developed

a GPU implementation of the lattice H-

matrix.

• In FY2021 we improved the complexity

of theH2-matrix LU decomposition from

O(N log2 N) to O(N), compared various

runtime systems, benchmarked against

other libraries such as STRUMPACK

and LORAPO, and extended to LDL de-

composition.

• In FY2022 we extended the GPU imple-

mentation of H-matrices to use Tensor

Cores, extended the O(N) H-matrix LU

factorization to distributed memory, and

extended the O(N) H-matrix LU factor-

ization to LDL factorization.

5 Details of FY2023 Research

Achievements

The five main goals for the fiscal year 2023

are

1. Application of the runtime system PaR-

SEC developed at UTK to our H-matrix

library

2. Application of the LDL factorization to

find the k-th eigenvalue in electronic

structure calculations

3. Extending the O(N) H-matrix LU fac-

torization to multi-GPU

4. Completing the GPU implementation for

BLR-QR in the HACApK library

5. BLR tridiagonalization for computing

the full eigenspectrum

We were able to complete all five tasks. Task

1 was published in [6], task 2 was published

Fig. 1 DAG of the Cholesky decomposi-

tion on HSS-matrix.

in [5], task 3 has been published in [1], task

4 has been published in [9,10,12], task 5 has

been published in [3,8]. Other publications

in Section 7 are results from previous years

that were published in FY2023.

5.1 Application of the runtime system PaR-

SEC developed at UTK to our H-matrix

library

5.1.1 Research plan

LAPACK has evolved into ScaLAPACK for

MPI, PLASMA for many-core, and MAGMA

for GPUs, which are all developed at Jack

Dongarra’s group at UTK. The latest inven-

tion from the UTK group is SLATE, which

will be replacing the above libraries in the



Progress Report for JHPCN Joint Research of FY 2023 5

near future. SLATE is one of the core li-

braries being developed as art of the Exascale

Computing Project (ECP). SLATE extracts

parallelism on distributed memory systems

through the use of runtime systems such as

PaRSEC. Our goal is to use the same runtime

system forH-matrices instead of dense matri-

ces. Unlike, dense matrices which have equal

workload between the subblocks, H-matrices

contain subblocks with varying rank. There-

fore, H-matrices are much more difficult to

load-balance, so its parallelization through

PaRSEC will require considerable effort.

5.1.2 Progress

We have proposed a ULV factorization for

HSS matrices, and provided an implementa-

tion, HATRIX-DTD, using the PaRSEC run-

time system. The PaRSEC runtime system,

can asynchronously execute tasks by resolv-

ing the dependencies using a directed acyclic

graph (DAG) as shown in Fig. 1. We have

showed that factorization of structured dense

matrices arising from a diverse set of ker-

nels. This is achieved as a result of the asyn-

chronous runtime system and the lower com-

putational intensity of the HSS-ULV factor-

ization. Using HATRIX-DTD, we show that

our implementation has much faster solution

time than established state-of-the-art imple-

mentations such as STRUMPACK and LO-

RAPO as shown in Fig. 2 [6].

5.2 Application of the LDL factorization to

find the k-th eigenvalue in electronic

structure calculations

5.2.1 Research plan

During FY2022 we have extended the LU fac-

torization in our Hatrix library to LDL fac-

torization. The D matrix in LDL factoriza-

tion is a diagonal matrix that can be used

to perform a slicing the spectrum approach

to compute the k-th Eigenvalue, where ‘k’
is a prescribed value defined by the user. In

electronic structure computations, it is nec-

essary to compute the k-th Eigenvalue. How-

ever, in FY2022 we were only able to apply

to LDL factorization to simple test matrices.

The goal for FY2023 2Q is to apply our LDL

factorization to the actual matrices arising

from electronic structure calculations.

5.2.2 Progress

We develop a generalized LDL decomposition

ofH2-matrices and combine it with the bisec-

tion eigenvalue algorithm to compute the k-

th eigenvalue with controllable accuracy. In

addition, if more than one eigenvalue is re-

quired, some of the previous computations

can be reused to compute the other eigen-

values in parallel. Numerical experiments

show that our method is more efficient than

the state-of-the-art dense eigenvalue solver in

LAPACK/ScaLAPACK and ELPA as shown

in Fig. 3 [5].

5.3 Extending the O(N) H-matrix LU factor-

ization to multi-GPU

5.3.1 Research plan

During FY2022 we developed a novel H-

matrix LU factorization algorithm with no

trailing sub-matrix dependencies, which has

presented at SC22. This method is ground-

breaking in the sense that it can perform

LU factorization of dense matrices in an em-

barrassingly parallel fashion without waiting

for the upper-left blocks to finish. However,

the SC22 paper only had results for a flat



Progress Report for JHPCN Joint Research of FY 2023 6

Fig. 2 Comparison between LORAPO and STRUMPACK for Cholesky factorization.

Fig. 3 Comparison between LAPACK, ScaLAPACK, and ELPA for k-th eigenvalue problem.

MPI implementation and no GPU implemen-

tation. The embarrassingly parallel nature

of our algorithm makes it a perfect candi-

date for batched operations on GPUs, which

can extract the full potential of Tensor Cores

even when the matrices are small.

5.3.2 Progress

We have developed a highly scalable algo-

rithm for an O(N) Cholesky factorization for

rank-structured dense matrices and its multi-

GPU implementation. By pre-computing the

fill-ins and including them in the shared ba-

sis, we are able to devise an inherently paral-

lel factorization algorithm even for strongly

admissible H2-matrices. We also develop a

novel algorithm for performing the forward

and backward substitution in an inherently

parallel manner. This inherently parallel fac-

torization and substitution algorithms allows

us to use batched kernels in cuBLAS and

cuSOLVER, and extract the full potential

GPUs even for small block sizes. Our method

shows superiority to simpler low-rank ma-

trix formats such as BLR and HSS in arith-

metic complexity, and the ability to han-

dle higher dimension geometry. We are able

to solve a 3-D Yukawa potential problem of

N = 29, 242, 368 under 1 second using 512

NVIDIA V100 GPUs as shown in Fig. 4 [1].



Progress Report for JHPCN Joint Research of FY 2023 7

Fig. 4 Comparison with LORAPO for

Cholesky factorization on GPUs.

5.4 Completing the GPU implementation for

BLR-QR in the HACApK library

5.4.1 Research plan

The HACApK library is written in Fortran

and its porting to GPUs is not straightfor-

ward. In the previous JHPCN projects we

gradually started to port each subroutine

in HACApK’s BLR-QR factorization code

to CUDA one by one. When only part of

the BLR-QR is ported to CUDA, there will

be many CPU-GPU data copy between the

parts that run on the CPU and parts that

run on the GPU. This causes a huge over-

head, so the porting of the entire BLR-QR

is necessary for BLR-QR to achieve decent

performance on GPUs.

5.4.2 Progress

During FY2023, we have completed the port-

ing of all Fortran subroutines in HACApK to

CUDA functions. This allows us to keep all

the data during the BLR-QR factorization

on the GPU, instead of copying parts of the

data back and forth [9,10,12].

5.5 BLR tridiagonalization for computing the

full eigenspectrum

5.5.1 Research plan

Eigenvalue decomposition of dense matrices

are performed by libraries such as ELPA or

EigenExa. However, the dense matrix must

first be tridiagonalized before the eigende-

composition is performed. This tridiagonal-

ization can be done in O(N logN) time if

H-matrices are applied. During FY2023, we

have developed a novel algorithm for apply-

ing H-matrices during the tridiagonalization

phase of a dense eigenvalue decomposition.

5.5.2 Progress

We developed a fast tridiagonalization

method based on the block low rank (BLR)

structure, that reduces the complexity of the

tridiagonalization from O(N3) to O(N7/3)

[???]. Block Householder vectors are also

formed using BLR-matrices. The procedure

for forming a block tridiagonal structure is

shown in Fig. 5. In numerical experi-

ments of a string free vibration problem with

known analytical solutions, for large eigen-

values, the calculated eigenvalues using the

proposed method converge toward the ana-

lytical ones in accordance with the theoret-

ical convergence curves. Owing to the re-

duced complexity, an eigenvalue decomposi-

tion of a matrix was solved with about N =

300,000, which is significantly larger than the

limit of conventional methods for dense ma-

trices, within a reasonable amount of time

on CPU cores. For the calculation time, the

proposed method was faster than the conven-

tional method when the matrix size N was

larger than a few tens of thousands [3,8].



Progress Report for JHPCN Joint Research of FY 2023 8

Fig. 5 A block-divided dense matrix A is transformed into a block tridiagonal matrix B

using the block Householder transformation.

6 Self-review of Current Progress and

Future Prospects

The five main goals for the fiscal year 2023

are

1. Application of the runtime system PaR-

SEC developed at UTK to our H-matrix

library

2. Application of the LDL factorization to

find the k-th eigenvalue in electronic

structure calculations

3. Extending the O(N) H-matrix LU fac-

torization to multi-GPU

4. Completing the GPU implementation for

BLR-QR in the HACApK library

5. BLR tridiagonalization for computing

the full eigenspectrum.

We were able to complete all five tasks. Task

1 was published in [6], task 2 was published

in [5], task 3 has been published in [1], task

4 has been published in [9,10,12], task 5 has

been published in [3,8]. Other publications

in Section 7 are results from previous years

that were published in FY2023.

7 List of publications and

presentations

Journal Papers (Refereed)

1. Q. Ma, R. Yokota, “An Inherently Par-

allel H2-ULV Factorization for Solving

Dense Linear Systems on GPUs”, In-

ternational Journal of High Performance

Computing Applications, 2024.

2. H. Ootomo, K. Ozaki, R. Yokota,

“DGEMM on Integer Matrix Multiplica-

tion Unit”, The International Journal of

High Performance Computing Applica-

tion, 2024.

3. A. Ida, “Algebraic Partition Construc-

tion Method for Hierarchical Matrices”,

IEEE Transactions on Magnetics, Vol.

60, pp. 1–4, 2024.

4. S. Deshmukh, R. Yokota, G. Bosilca,

“Cache Optimization and Performance

Modeling of Batched, Small, and Rect-

angular Matrix Multiplication on Intel,

AMD, and Fujitsu Processors”, ACM

Transactions on Mathematical Software,

2023.



Progress Report for JHPCN Joint Research of FY 2023 9

Proceedings of International Conference Papers

(Refereed)

5. M. R. Apriansyah, R. Yokota, Comput-

ing the k-th Eigenvalue of Symmetric

H2-Matrices, International Conference

on Parallel Processing (ICPP), Aug.

2023.

6. S. Deshmukh, R. Yokota, G. Bosilca,

O(N) Distributed Direct Factorization

of Structured Dense Matrices Using

Runtime Systems, International Con-

ference on Parallel Processing (ICPP),

Aug. 2023.

7. H. Ootomo, H. Manabe, K. Harada,

R. Yokota, Quantum Circuit Simulation

by SGEMM Emulation on Tensor Cores

and Automatic Precision Selection, ISC

High Performance, May 2023.

8. A. Ida, An Algebraic Partition Construc-

tion Method for Hierarchical Matrices,

COMPUMAG 2023, the 24th Interna-

tional Conference on the Computation of

Electromagnetic Fields, 2023.

Presentations at International conference

(Non-refereed)

9. S. Ohshima, A. Ida, N. Kawai,

R. Yokota, I. Yamazaki(+), “Accel-

eration of BLR-QR Using CUDA

Fortran+MIG+UVM”, SWoPP, Aug.

2023.

10. S. Ohshima, A. Ida, N. Kawai,

R. Yokota, I. Yamazaki(+), ”Large Scale

Acceleration of BLR-QR Factorization

Using CUDA Fortran+MIG+UVM”,

SWoPP2023, July, 2023.

11. S. Ohshima, A. Ida, R. Yokota, I. Ya-

mazaki(+), ”GPU Performance Opti-

mization and Autotuning in the 10,000

Core Era”, ATTA2023, Dec. 2023.

12. S. Ohshima, ”Considering multi process

calculations on current GPU”, ATAT in

HPSC 2024, National Center for High-

Performance Computing in Hsinchu Sci-

ence Park, Mar. 2023.


