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Abstract

We aim to develop Physics Informed Machine Learning (ML) methods capable of accelerating

and/or complementing standard simulation methods for Soft Matter flows. We have identified three

characteristic problems, (A) simulating entangled polymer melt flows, (B) inferring flow solutions,

and (C) navigating non-uniform flows, and developed ML techniques to solve each of them. (A) We

used ML to learn the constitutive relation of entangled polymers within the Doi-Takimoto model,

and then employed these relations to perform flow simulations that are an order of magnitude faster

than state-of-the-art Multi-Scale Simulations (MSS), with no significant loss of accuracy. (B) We

developed a probabilistic Stokes flow inference framework that is capable of inferring the flow solution

given partial and/or noisy data, and which exactly satisfies the physics of the problem. (C) Finally, we

also developed a learning protocol for swimmers in non-uniform flows, and showed that it is possible

to achieve near-optimal performance using only local hydrodynamic signals.

1 Basic information

1.1 Collaborating JHPCN centers

The University of Tokyo

1.2 Theme area

- Large-scale computational science

1.3 Research area

- Very large-scale numerical computation

- Very large-scale data processing

1.4 Project members and their roles

• J.J Molina: ML for Soft Matter.

• H. Shiba: Support for code optimization.

• T. Shimokawabe: Support for code optimiza-

tion.

• R. Yamamoto: Soft Matter theory.

• T. Taniguchi: MSS for polymer flows, GPU

coding.

• M.S. Turner: Intelligent/active Soft Matter

theory.

• T. Sato: MSS for polymer flows.

• D. Mayank: Microscopic polymer modeling.

• S. Miyamoto: ML and MSS for polymer

flows.

• Y. Xu: Microscopic polymer modeling.

• K. Ogawa: ML for flow inference.

• S. Schnyder: Simulation/optimal control of

active matter.

• K. Sankaewtong: Simulation/optimal con-

trol of active matter.

• H.L. Devereux: Simulation/optimal control

of active matter.

• M.P. Lynch: ML for optimal control.

• A.C. Meneses: Simulation/optimal control of

active matter.

2 Purpose and Significance of the

Research

Soft Matter systems are ubiquitous in our daily

lives. Understanding, predicting, and/or con-
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trolling their properties is a crucial but incred-

ibly challenging task. The difficulty comes from

the coupling between the microscopic and macro-

scopic degrees of freedom. Computer simulations

have become the method of choice, but they re-

main incredibly expensive. Thus, the goal of

this work is to develop ML techniques to replace

and/or enhance existing methods. In particular,

we have focused on three basic Soft Matter prob-

lems: (A) entangled polymer melt flows, (B) low-

Reynolds number flows, and (C) navigating non-

uniform flows.

(A) We propose to accelerate the state-of-the-

art Multi-Scale simulations, which directly cou-

ple micro/macro degrees of freedom, by using a

machine-learned constitutive relation. This will

allow us to optimize for polymer processing flows

and lead to the establishment of a bottom-up de-

sign framework for polymer products. For this

FY, we have extended our learning to incorporate

the principle of objectivity, and obtained drasti-

cally improved flow predictions.

(B) Stokes flows, characteristic of flows at small

scales or large molecular weight polymeric fluids,

are fundamental to biology and industry. How-

ever, existing numerical methods are not suited

for solving under-determined or inverse problems

(e.g., unknown boundary conditions). We pro-

pose a probabilistic Stokes flow solver that is ap-

plicable to arbitrarily complex geometries, and

which allows for mixed boundary conditions and

missing and/or noisy data. This will allow us

to provide experimental colleagues with a robust

tool to analyze their experiments (e.g., particle-

image velocimetry data on biological flows). For

this FY, we have extended the method to allow

for flow inference from sparse measurements typ-

ical of such experiments.

(C) Active Soft Matter, composed of agents

that consume energy to perform work, are ubiqui-

tous in biology, and have immense technological

applications (e.g., targeted drug delivery). How-

ever, understanding how they react to their en-

vironment remains an open question. To inves-

tigate how biological swimmers behave, we have

proposed a Machine-Learning/Direct Numerical

Simulation approach to design optimal naviga-

tion strategies in complex flows. This will allow

us to design “intelligent” artificial agents capable

of performing useful work. For this FY, we have

demonstrated how to teach agents to swim effi-

ciently in non-uniform flow fields using only local

hydrodynamic signals.

3 Significance as JHPCN Joint Research

Project

The goal of this project is to develop Physics

Informed Machine-Learning methods to simu-

late/analyze characteristic flow problems encoun-

tered in Soft Matter. For this FY, we focused

on three particular flow problems: (A) simulat-

ing entangled polymer melts, (B) inferring Stokes

flow solutions from partial data, and (C) learn-

ing optimal control strategies for swimming in

complex flows. The training, learning, and val-

idation for each of these problems requires con-

siderable computing resources. For example, (A)

the full MSS of entangled polymers, needed to

validate our ML solution, requires simulations

with O(108) polymer chains; (B) the Stokes flow

inference for 3D flows requires a GP regression

with O(106) training points, which can only be

performed on high-performance GPU clusters.

Likewise, the Reinforcement Learning used to

train a swimmer to navigate a complex flow re-

quires accurate hydrodynamic simulations, which

are notoriously expensive. Where possible, we

have used specialized GPU and/or Python/JAX

code, in order to take full advantage of Tokyo’s

Wisteria-BDEC cluster.
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4 Outline of Research Achievements up to

FY2021 (Only for continuous projects)

During FY2021 we were mainly working on the

precursors for Themes (A) and (B) of the cur-

rent project. For theme (A), we developed and

implemented a ML method to learn the constitu-

tive relation of polymeric materials with memory,

allowing us to drastically reduce the calculation

cost of MSS. The method was extended to entan-

gled polymers within the Doi-Takimoto model,

but due to the simple training protocol used, the

flow predictions were only in semi-quantitative

agreement with MSS. Furthermore, we also ex-

tended and validated the Doi-Takimoto model,

to include the stretch/orientation induced reduc-

tion of friction, which is required to correctly

reproduce the strain hardening observed under

fast elongational flows. Finally, we also ported

the non-interacting polymer models to GPU us-

ing OpenACC and CUDA. Our results were in-

credibly encouraging, with a single GPU running

O(103) times faster than a single CPU, and O(10)

times faster than a 25 core CPU/MPI computa-

tion. For theme (B), we established the proof-of-

concept for the probabilistic Stokes flow solver,

and demonstrated that it was capable of infer-

ring the solution to a flow problem given the full

set of boundary conditions.

5 Details of FY2022 Research

Achievements

5.1 Learning the constitutive relation of entangled

polymer melts

We have extended and improved our ML acceler-

ated MSS method, which uses a Gaussian Process

(GP) regression scheme to learn the constitutive

relation for the Doi-Takimoto (DT) polymer en-

tanglement model. We successfully used these

relations to perform polymer melt flow simula-

Fig. 1 Simulation results for pressure driven

flow of an entangled polymer melt between flat

parallel plates. Shown are the normalized (A)

velocity vx and (B) shear stress σxy profiles,

as a function of the scaled height y and time

t, obtained from (a) ML constitutive relations

and (b) full MSS (Miyamoto et al., under re-

view at Physics of Fluids).

tions in simple geometries (i.e., pressure driven

flow between parallel plates). For the training, we

used a microscopic DT system, with 104 chains,

and measured the stress response under steady

and oscillatory shear, using ≃ 50 different shear

rates. From this, we obtain a training dataset

of ≃ 3 × 103 points (κ,σ, σ̇), consisting of ve-

locity gradients κ, stresses σ, and their time-

derivatives σ̇. The GP regression was performed

using the Python/GPyTorch package, in order to

learn the constitutive relation σ̇(κ, σ̇). For the

2D flows we have considered here, the genera-

tion and learning can be performed in a relatively

short time (≃ 0.1 hours on a single GPU). How-

ever, this is expected to dramatically increase

when simulating complex 3D flows/deformation

modes.

The machine-learned constitutive relation was

then used to simulate the pressure-gap-driven

flow between parallel plates. For the flow solver,

we used the Smoothed Particle Hydrodynamics
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(SPH) method, as implemented in the Framework

for Developing Particle Simulators code (Iwasa et

al., Publ. Astron. Soc. Jpn. 68, 54, 2016), which

has MPI capabilities. The ML constitutive rela-

tion, instantiated via GPyTorch, was called from

this C++ SPH code using Torchscript. The num-

ber of SPH particle was set to 800. The flow

prediction was assessed by comparing against a

full Multi-Scale Simulation (MSS), using embed-

ded microscopic simulators (104 chains per SPH

particle), in which the macroscopic fluid particle

and microscopic simulators are fully distributed

among CPU cores using MPI. Fig. 1 shows the

comparison of the velocity profiles vx and shear

stresses σxy, as a function of the channel height

and time. The ML model provides excellent pre-

dictions, within ≲ 10% relative error, but with

an order of magnitude increase in efficiency, both

in compute time and memory requirements. As

an example, running on a single 40-core CPU,

the ML accelerated MSS took ≃ 2 hours, using

≃ 2GB of memory, whereas the full MSS required

≃ 1 day, and used ≃ 12GB of memory. This ef-

ficacy is expected to increase for complex 2D or

3D systems, as the MSS will require considerably

more compute time.

Finally, we have also investigated the use

of more detailed polymer models, e.g., coarse-

grained and all-atom models (using GROMACS

and LAMMPS), in order to provide more quan-

titative predictions (e.g., to study the difference

between natural and synthetic rubber).

5.2 Learning the Stokes equation

We have extended our Gaussian Process (GP)

based Stokes flow solver to allow for missing

boundary conditions and/or sparse training data,

as required for analyzing experiments. We re-

fer to this probabilistic framework as a Stoke-

sian Process (SP). In particular, we use known

values of the velocity v and/or pressure p, and

Fig. 2 SP inference for a pressure driven flow

through a sinusoidal channel. (a-d) Location

of the training points for the governing equa-

tions (i.e., Stokes f = 0 and continuity s = 0),

the training FEM velocities, and the periodic

boundary conditions for the velocity and pres-

sure fields; (e) SP predicted velocities, (f) SP

and FEM velocity contours, (g) error between

SP and FEM results, and (h) SP prediction

uncertainties (Molina et al., unpublished).

require that the governing equations, here the

Stokes/force-balance equation f ≡ ∇p−µ∇2u =

0, and the continuity equation s ≡ ∇ · u =

0, be satisfied at arbitrarily chosen training
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points. Furthermore, the correlations between

these fields, u, p,f and s are directly encoded

into the GP correlation matrices, ensuring that

the physics of the problem is satisfied (on aver-

age). This is only possible thanks to the linearity

of the Stokes equations, and the fact that GPs are

closed under linear operators. Our SP framework

is implemented using Python/JAX, which allows

us to leverage the built-in automatic differenti-

ation capabilities to define the custom physics-

informed kernels, which can contain up to fourth-

order derivatives.

As an example, we have tested our method on a

pressure driven flow problem through a sinusoidal

channel. As expected, given the full set of bound-

ary conditions (e.g., zero velocity at the walls,

constant pressure gap between inlet/outlet) we

can accurately infer the flow. However, a more

interesting/challenging task is to reconstruct the

flow given sparse measurements, and without

knowledge of the boundaries. For this, we used

a reference FEM solution (generated using the

FEniCSx computing platform), and randomly se-

lected 30 points within the domain, to use the

corresponding velocities as training points for the

GP inference. We introduced additional train-

ing points to enforce the governing equations, i.e.,

the Stokes f = 0 (337× 2 points) and continuity

s = 0 (337 points) equations, as well as the pe-

riodic boundary conditions (15× 2 points for the

velocity and 15 for the pressure), but no other in-

formation was required. Our SP solver was able

to accurately infer the flow, as shown in Fig. 2 for

5184×2 test/prediction points. Furthermore, the

prediction uncertainties, which come for free with

the GP (in contrast to Neural-Networks), are in

good agreement with the actual error (computed

using the FEM solution), showing the robustness

of this ML approach. We have confirmed that

the error decreases upon increasing the number

of training points, likewise, the prediction error

increases with the distance to the training points.

While a single calculation (training+prediction)

for such a simple 2D flow problem is relatively

inexpensive (≃ 5 minutes on a single GPU), it

relies on the ability to run Python+JAX on high-

performance GPUs (≳ 20GB memory). Finally,

we note that while our method is more expen-

sive than FEM for this sample problem (almost 8

times slower), it will become much more compet-

itive when we consider 3D flows in the presence

of moving boundaries, where remeshing becomes

a serious bottleneck to FEM.

5.3 Machine Learning optimal control

We have established a combined ML/Direct Nu-

merical Simulation approach to tackle the op-

timal control problem of a swimmer navigat-

ing complex flows. In particular, we have used

Deep Q-Learning, trained on detailed hydrody-

namic simulations of swimming particles in a non-

uniform zig-zag shear flow. The Deep Q-Learning

is implemented using the PyTorch package, while

the direct numerical simulations are computed

using the Smoothed Profile method, as imple-

mented in the KAPSEL simulator. The swim-

mer, here modeled as a rigid spherical squirmer,

is endowed with surface sensors that allow it to

measure hydrodynamic forces, which it uses to

select an optimal strategy (here a body rota-

tion) for the particular task at hand (e.g., swim-

ming in the flow, shear-gradient, or vorticity di-

rections). The actions of the swimmer are en-

coded in a neural-network with three hidden lay-

ers, each with 100 neurons, and an output layer

with 27 neurons (each specifying a different axis

of rotation). We have shown that the swimmer

can achieve near-optimal performance using only

local information. However, we did notice a re-

duced performance when tasked with navigating

in the flow direction, as the swimmer was not able
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Fig. 3 (top) Trajectories of a “smart” or op-

timally controlled (OC) swimmer, trained to

travel in the shear gradient direction, com-

pared to a “naive” swimmer. (bottom) Polar

order parameter for a dispersion of swimmers,

as a function of volume fraction φ. For a dis-

persion of “naive” swimmers, ordered motion

is only seen for relatively weak swimming pa-

rameters. However, a dispersion of “smart”

swimmers is able to achieve polar ordering,

regardless of swimming type or concentration

(K. Sankawtong et al, unpublished).

to consistently maintain itself in the shear-plane.

Finally, we have shown that it is possible to train

a collection of swimmers to show ordered collec-

tive motion (see Fig.3), although the training cost

increases dramatically with the concentration of

swimmers.

6 Self-review of Current Progress and

Future Prospects

Our original plan was divided into the three

themes of, (A) learning the constitutive rela-

tion of entangled polymer melts, (B) learning the

Stokes equation, and (C) learning efficient swim-

ming strategies. For theme (A), we have success-

fully improved our learning method, to the point

where we are now able to perform 2D flow sim-

ulations in complex geometries that are in good

quantitative agreement with full MSS. For theme

(B), we have successfully extended our probabilis-

tic flow solver to 2D. We have tested our method

on a non-trivial problem for which no exact solu-

tion is known, and shown that we can accurately

reproduce the flow given incomplete information

(e.g., sparse sampling of the velocity only). For

theme (C), we have successfully developed a Re-

inforcement Learning method to teach swimmers

to navigate non-homogeneous flows using only lo-

cal hydrodynamic signals. Furthermore, we have

also considered suspensions of such swimmers,

training them to exhibit targeted collective mo-

tion. Finally, we have also explored how to ap-

ply these ML methods to other active systems, in

particular, crawling/proliferating cells.

Our research plan for FY2023 will continue to

develop these themes. For theme (A), we will

learn constitutive relations applicable to complex

3D flows of entangled polymer melts (e.g., non-

isothermal flows ). Furthermore, we will focus on

porting our full code-base (microscopic polymer

models as well as SPH fluid solvers) to GPUs,

as this is required to simulate large scale sys-

tems. We will also optimize our learning pro-
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tocol (e.g., active learning) and implement the

method on GPUs, to allow us to perform ex-

act inference using millions of training points

(also required for 3D flows). In this way, we

will be able to perform simulations for complex

processing flows relevant to industrial applica-

tions. For theme (B), we need to optimize our

code to handle large scale 3D systems and mov-

ing boundaries. This requires replacing the ba-

sic Cholesky decomposition approach with the

Black-Box-Matrix-Matrix algorithm introduced

by GPyTorch. Unfortunately, given the complex-

ity of our custom physics-informed kernels, we are

not able to use GPyTorch, and must instead im-

plement these methods in a JAX-friendly (func-

tional) way. With this, we will be able to analyze

real-world flow experiments. Finally, for theme

(C) we will continue to investigate how to con-

trol the collective motion of dense swimmer dis-

persions. For this, we will aim to minimize the

overhead of interfacing the C++ hydrodynamic

code with the GPU learning code.
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