
1

jh220050

Implementation and Application of High-Performance
Empirical Dynamic Modeling

Keichi Takahashi (Tohoku University)

Abstract

This research aims at developing a high-performance implementation of Empirical Dynamic
Modeling (EDM), an emerging framework for non-linear time series analysis. EDM enables
a variety of analyses such as short-term forecasts, quantification of non-linearity, and causal
inference. Although EDM is a generic modeling method for time series data, it was originally
developed in the field of ecology, where available datasets are relatively small. Thus, the
current libraries for EDM are not designed with performance in mind, and the scale of
datasets that can be analyzed are limited. To enable large-scale analysis using EDM, we
have been developing a high-performance EDM implementation. In this research, we continue
this effort by (1) porting time-consuming kernels in EDM to the SX-Aurora TSUBASA
Vector Engine (2) enhancing the scalability of EDM by utilizing approximate algorithms (3)
analyzing neural activity datasets to evaluate the performance of the ported implementation.

1 Basic information

1.1 Collaborating JHPCN centers

Tohoku University

1.2 Theme area

Data science/data usage area

1.3 Research area

• Very large-scale data processing

• Very large-scale numerical computation

1.4 Project members and their roles

• Keichi Takahashi, Tohoku University,

Japan (Administration and code devel-

opment)

• Gerald M. Pao, Salk Institute for Biolog-

ical Studies, USA and Okinawa Institute

of Science and Technology, Japan (Algo-

rithm design and analysis of results)

• Wassapon Watanakeesuntorn, Nara In-

stitute of Science and Technology, Japan

(Performance evaluation)

2 Purpose and significance of the
research

This research aims at developing a high-

performance implementation of Empirical

Dynamic Modeling (EDM), an emerging

framework for non-linear time series analy-

sis, and applying it to large-scale datasets.

EDM enables a variety of analyses such as

short-term forecasts, quantification of non-

linearity, and causal inference. These analy-

ses are achieved by reconstructing the latent

Progress Report for JHPCN Joint Research of FY 2022 2

dynamics behind the data without assuming

a parametric model or using prior knowledge

(Figure 1).

Although EDM is a generic modeling

method for time series data, it was originally

developed in the field of ecology. De facto

standard tools and libraries for EDM analysis

are therefore designed to target a small num-

ber of short time series. While recent stud-

ies have successfully applied EDM to diverse

datasets, the lack of a high-performance im-

plementation is limiting the scale of datasets

that can be analyzed. To enable large-scale

analysis using EDM, we have been develop-

ing a high-performance EDM implementa-

tion. In this research, we continue this effort

by tackling the following three challenges:

1. Porting our EDM implementation to the

SX-Aurora TSUBASA Vector Engine.

2. Enhancing the scalability of EDM by uti-

lizing approximate algorithms.

3. Analyzing neural activity datasets to

evaluate the performance of the ported

implementation.

3 Significance as JHPCN Joint
Research Project

This research closely aligns with the goals of

JHPCN joint research. It is carried out by

an international and interdisciplinary team of

scientists. The representative has been work-

ing with HPC infrastructure and HPC appli-

cation optimization, while the deputy repre-

sentative has long experience in the field of

quantitative biology, neuroscience, and non-

linear dynamics. In particular, Pao has been

Diffeomorphism

(a) Original State Space
(x (t), y (t), z (t))

(b) Reconstructed State Space
(x (t), x (x − τ), x (x − 2τ))

x (t)
y (t)

z (t)

x (t)
x (t − τ)

x (t − 2τ)

-20 -10 0 10 20-40
-20

0
20
40

0
10
20
30
40
50

-20 -10 0 10 20-20
-10

0
10
20

-20

-10

0

10

20

Fig. 1: State Space Reconstruction

collaborating with George Sugihara, one of

the original developers of EDM.

4 Outline of Research Achievements
up to FY2021

N/A

5 Details of FY2022 Research
Achievements

5.1 Porting EDM to the SX-Aurora TSUB-

ASA Vector Engine

5.1.1 Overview

We ported the most time-consuming and

critical component of the EDM algorithm,

which is the k-nearest neighbor (k-NN)

search in the state space, to the SX-Aurora

Vector Engine and conducted a preliminary

performance evaluation. We implemented an

exact k-NN search using a brute-force ap-

proach. That is, we first (1) compute the

pairwise distance matrix between all points

in the state space, and then (2) sort the dis-

tance matrix to find the nearest neighbors for

each point. The outcome of this section has

been presented in [2] and [4].

5.1.2 Compared algorithms

Sine the pairwise distance calculation

achieves high performance comparable to

that of GPUs, and shows both high vector-

Progress Report for JHPCN Joint Research of FY 2022 3

ization rate and average vector length, we

focused on the sorting of the distance matrix

and compared the following five approaches:

1. C++ STL sort (introsort)

2. C++ STL partial sort (heap)

3. NEC ASL sort (radix sort, vectorized)

4. LSD radix sort (radix sort, vectorized)

5. MSD radix partial sort (vectorized)

C++ STL sort (introsort): This is the sort-

ing routine provided by C++ Standard Tem-

plate Library (STL) as std::sort. It uses

the introsort algorithm, where the input ar-

ray is recursively partitioned using quicksort,

and once each partition becomes smaller than

a threshold, it is sorted using insertion sort.

C++ STL partial sort (heap): This the

partial sorting routine provided by C++

STL as std::partial_sort. The algorithm

works by scanning over the input array and

incrementally updating a max-heap of size

k. If an array element is smaller than the

maximum element in the heap, the maxi-

mum element is element is removed from the

heap and the new element is inserted into the

heap. If the array element is larger than the

maxmium element in the heap, it is ignored.

NEC ASL sort (radix sort, vectorized):

This a vectorized sort algorithm pro-

vided by NEC’s proprietary ASL library

(https://sxauroratsubasa.sakura.ne.

jp/documents/sdk/SDK_NLC/UsersGuide/

asluni/f/en/index.html). The documen-

tation provided by NEC mentions it uses

radix sort, but the detailed algorithm is not

described and unknown.

LSD radix sort (radix sort, vector-

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1×103 1×104 1×105 1×106

R
u
n
tim

e
 [
m
s
]

Array length (N)

STL full sort
STL partial sort

ASL full sort
LSD radix full sort

MSD radix partial sort

Fig. 2: Partial sort runtime on VE Type 20B

ized): This is a vectorized radix sort im-

plemented by NEC and open-sourced on

GitHub (https://github.com/SX-Aurora/

radixsort_vec). The algorithm looks at a

block of contiguous bits and from the most

significant digit to the least significant digit.

At each iteration, a “digit” (a contiguous

blocks of bits) in the binary representation of

each array element is extracted, and the ar-

ray elements are put into bins corresponding

to different digits. The elements are then re-

organized using a stable counting sort. This

is repeated until all digits are processed.

MSD radix partial sort (vectorized): This

is our implementation of a vectorized radix

partial sort. This is similar to the LSD radix

sort, but the digits are scanned from the

most-significant to the least-significant bits.

Furthermore, only the elements in the bins

that contain the top k elements are carried

over to the next iteration. This way, the

number of elements to be processed is re-

duced at each iteration.

Progress Report for JHPCN Joint Research of FY 2022 4

5.1.3 Evaluation results

Figure 2 compares the runtime of the five al-

gorithms with respect to the array length.

Clearly, STL sort is the slowest one among

all algorithms, because it is not vectorized

at all. The next slowest is LSD radix sort.

Although this implementation is vectorized

and also provided by NEC, it is slower than

any of the vectorized algorithms. The fastest

one among algorithms that sort the whole ar-

ray (i.e., not partial sort) is the ASL sort.

This algorithm is consistently faster than the

LSD radix sort, and even faster than MSD

radix partial sort if the array length is below

20,000.

Surprisingly, the unvectorized STL partial

sort is faster than the vectorized MSD radix

partial sort for shorter arrays. Specifically,

the STL partial sort is the fastest if the input

array is shorter than 100,000. This is likely

because the MSD radix sort requires multiple

passes over the input array, while the STL

partial sort only requires a single pass over

the input. As the array becomes longer, vec-

torization pays off. Therefore, a hybrid ap-

proach to use STL partial short arrays and

MSD radix sort for long arrays seems to be

promising.

Figure 3 compares the runtime of the algo-

rithms with respect to the number of nearest

neighbors to find. As expected, the runtime

of STL sort, ASL sort and LSD radix sort

are constant because they sort the entire ar-

ray regardless of k. The runtime of both the

STL partial sort and MSD radix partial sort

increase with respect to k. However, the in-

crease in runtime decreases as the array be-

 0.001

 0.01

 0.1

 1

 10

 1×100 1×101 1×102

R
u
n
tim

e
 [
m
s
]

Number of neighbors (k)

STL sort
ASL sort

LSD radix sort
STL partial sort

MSD radix partial sort

(a) N = 103

 0.01

 0.1

 1

 10

 1×100 1×101 1×102

Number of neighbors (k)

(b) N = 104

 0.1

 1

 10

 1×100 1×101 1×102

R
u
n
tim

e
 [
m
s
]

Number of neighbors (k)

(c) N = 105

 1

 10

 100

 1000

 1×100 1×101 1×102

Number of neighbors (k)

(d) N = 106

Fig. 3: Top-k sorting runtime on VE Type

20B (varying k)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1×103 1×104 1×105 1×106

R
u
n
tim

e
 [
m
s
]

Array length (N)

STL partial sort (VE)
MSD radix partial sort (VE)

STL full sort (Xeon)
STL partial sort (Xeon)

LSD radix full sort (Xeon)
MSD radix partial sort (Xeon)

Fig. 4: Comparison of partial sort runtime

on VE Type 20B and Xeon Silver 4208

comes longer. When the array length is 106,

we see almost no increase in k.

Lastly, Figure 4 compares the runtime of

sorting algorithms on VE Type 20B and

Xeon Silver 4208. The plot shows that the

sorting performance on VE is generally poor

Progress Report for JHPCN Joint Research of FY 2022 5

compared to Xeon, none of the sorting algo-

rithms on VE surpassed the performance of

STL partial sort on Xeon. We are therefore

considering to run the distance calculation

on the Vector Engine and the sorting on the

CPU.

5.2 Applying approximate algorithms to EDM

5.2.1 Overview

Even if accelerators such as VE and GPU

are employed, brute-force k-NN search is not

scalable since it has quadratic time and space

complexity with respect to the number of

points. We therefore investigated the feasi-

bility of using approximate k-NN search al-

gorithms to make EDM scalable. Specifically,

we integrated the Faiss*1 vector similarity

search library into our implementation and

evaluated the runtime and accuracy trade-

off. The outcome of this section is currently

under review [1].

We compared following three different ap-

proximate k-NN search algorithms in addi-

tion to brute force search on CPU and GPU:

1. Inverted File Index (IVF): This algo-

rithm first clusters the data points into

multiple clusters. Then, a brute-force

search is executed within the cluster clos-

est to the query point.

2. k-dimensional Tree (k-d Tree): This al-

gorithm recursively partitions the space

into cells using hyperplanes. Given a

query point, the tree is traversed and

only points contained in a small number

of cells are searched to find the nearest

neighbors.

*1 https://faiss.ai/

 1×10-1

 1×100

 1×101

 1×102

 1×103

 1×104

 1×104 1×105 1×106

R
u
n
tim

e
 [
m
s
]

L

Brute-force
IVF

HNSW
K-D Tree

Fig. 5: Simplex projection runtime with dif-

ferent approximate k-NN search algorithms

(E = 1)

3. Hierarchical Navigable Small World

(HNSW): This is a state-of-the-art

graph-based approximate k-NN search

algorithm based on the Navigable Small

World (NSW) graphs. NSW graphs are

graphs that contain both long-range and

short-range edges, and there exist a path

between any two vertices with a polylo-

gratihmic number of edges with respect

to the number of vertices.

5.2.2 Evaluation results

We integrated the above-mentioned three ap-

proximate k-NN search algorithms into our

implementation of EDM [3], and measured

the runtime of Simplex projection, a short-

term forecast method, under different condi-

tions.

Figure 5 shows the runtime of Simple pro-

jection when the embedding dimension (the

dimension of the reconstructed state space) is

one. Evidently, the runtime of brute-force k-

NN search grows rapidly due to its quadratic

time complexity and becomes quickly pro-

Progress Report for JHPCN Joint Research of FY 2022 6

 1×10-1

 1×100

 1×101

 1×102

 1×103

 1×104

 1×104 1×105 1×106

R
u
n
tim

e
 [
m
s
]

L

Brute-force
IVF

HNSW
K-D Tree

Fig. 6: Simplex projection runtime with dif-

ferent approximate k-NN search algorithms

(E = 20)

hibitive. Out of the approximate algorithms,

k-d Tree is the fastest for most time series

length. The speedup of k-d Tree over brute-

force reaches 3406× when the time series

length is 220. Figure 6 shows the runtime

when the embedding dimension is 20. Here,

k-d Tree is non longer the fastest and falls be-

hind IVF and HNSW. This is a known prop-

erty of k-d Tree that it suffers with high-

dimensional data. The speedup of HNSW

over brute-force reaches 775× when the time

series length is 220. In conclusion, using

k-d Tree for low embedding dimension and

HNSW for high embedding dimension seems

to be reasonable choice.

We also tested the accuracy of Simplex

projection when using approximate k-NN

search algorithms instead of exact k-NN

search. Figure 7 shows the Mean Absolute

Percentage Error (MAPE) of Simplex projec-

tion with different k-NN search algorithms.

Surprisingly, the change in MAPE is almost

ignorable even when an approximate search

 0.001

 0.01

 0.1

 1

 10

 1×104 1×105 1×106

M
A
P
E

L

Exact
IVF

HNSW
K-D Tree

(a) E = 1

 0.001

 0.01

 0.1

 1

 10

 1×104 1×105 1×106

M
A
P
E

L

Exact
IVF

HNSW
K-D Tree

(b) E = 20

Fig. 7: MAPE of Simplex projection with dif-

ferent approximate k-NN search algorithms

is used. This indicates that Simplex projec-

tion is highly robust to incorrect neighbors.

5.3 Analyzing neural activity datasets

We obtained several neural activity datasets

from our collaborators. These datasets con-

tain whole brain scale neural activity at

single-neuron resolution. Specifically, they

were recorded from a genetically modified

larval zebrafish using light sheet fluores-

cence microscopy. The datasets include up

to 10, 000 time steps and 100, 000 time se-

ries. We applied Convergent Cross Map-

ping (CCM), a causal inference algorithms

in EDM, to these datasets and obtain a map

of causal interactions between every pair of

neurons. The outcome of this section has not

been published yet.

6 Self-review of Current Progress and
Future Prospects

As for the first challenge, we were able to

port the performance-critical k-NN search

kernel to the Vector Engine. However, the

sorting performance was unsatisfactory even

though we implemented several highly vec-

torized sorting algorithms. We will continue

Progress Report for JHPCN Joint Research of FY 2022 7

to analyze the reasons behind the efficiency

and optimize them. Furthermore, we will in-

vestigate whether we can apply state-of-the-

art sorting algorithms for GPUs. We will also

explore a hybrid approach to run tine dis-

tance calculation on the Vector Engine and

the sorting on the CPU.

As for the second challenge, we integrated

several approximate k-NN search algorithms

into our implementation of EDM [3] and eval-

uated the runtime and accuracy of Simplex

projection. We showed that the use of ap-

proximate k-NN search can offer up to 3406×
speedup with minimal loss in accuracy. This

result opens up possibilities to apply EDM to

extremely large-scale datasets that were in-

tractable in the past. We plan to open-source

the implementation in the near future.

As for the third challenge, we applied the

Convergent Cross Mapping (CCM) causal in-

ference algorithms to whole brain scale neu-

ral activity datasets and obtained a causal

map of all neurons. We plan to apply the

result of this project to other datasets in the

biology field, such as spatiotemporal gene ex-

pression datasets.

7 List of publications and
presentations

Journal Papers (Refereed)

[1] Keichi Takahashi, Kohei Ichikawa,

Joseph Park, and Gerald M. Pao (+),

“Scalable Empirical Dynamic Modeling

with Parallel Computing and approxi-

mate k-NN Search,” IEEE Access, Jan.

2023. (under review)

Proceedings of International
Conference Papers (Refereed)

N/A

Presentations at International
conference (Non-refereed)

[2] Keichi Takahashi and Gerald M. Pao

(+), “Challenges in Scaling Empirical

Dynamic Modeling,” The 34th Work-

shop on Sustained Simulation Perfor-

mance (WSSP 34), Oct. 2022.

Presentations at domestic conference
(Non-refereed)

N/A

Published open software library and so
on

[3] Keichi Takahashi, kEDM, https:

//github.com/keichi/kEDM, 2023.

Other (patents, press releases, books
and so on)

[4] Keichi Takahashi, Kohei Ichikawa, and

Gerald M. Pao (+), “Toward Scalable

Empirical Dynamic Modeling,” Sustained

Simulation Performance 2022, 2023. (in

print)

