jh220032

原子力気液二相流解析における界面捕獲手法の高度化

杉原 健太(日本原子力研究開発機構)

概要

エクサスケールスパコンを活用した原子力気液二相流解析の実現に向けて、混合精度前 処理を用いた圧力 Poisson 解法の改良、および界面捕獲手法の高度化を実施した。前 処理に半精度演算を用いる際に、対角優位となるように低精度へのデータ変換すること により収束性の悪化を防ぐことに成功した。気液二相流解析の界面捕獲手法として最適 化を行った Phase Field 法を適用し、5x5 バンドル体系解析においてボイド率の確率 密度分布を評価した結果、前年の結果を改善する事ができた。

1. 共同研究に関する情報

- (1) 共同利用・共同研究を実施している拠点名 東京工業大学 学術国際情報センター
- (2) 課題分野 大規模計算科学課題分野
- (3) 共同研究分野 超大規模数值計算系応用分野
- (4) 参加研究者の役割分担

杉原健太 (JAEA):研究の主導、多相流体解析の実施 青木尊之(東工大): Phase field 法に関する助言 小野寺直幸(JAEA):多相流体解析の実施 下川辺隆史(東大):GPU計算に関する最適化の助言 井戸村泰宏(JAEA):計算結果の考察 山下晋(JAEA):計算結果と実験の比較・考察 河村拓馬 (JAEA):計算結果の可視化 伊奈拓也(JAEA): Poisson 解法の GPU 最適化

研究の目的と意義

原子力工学分野の多相流体解析は、構造物と気液 界面の相互作用に起因する複雑な流動形式を捉えた マルチスケール現象の計算が必須となる。そのよう な大規模解析の実現に向けて、日本原子力研究開発 機構 (JAEA) では、スーパーコンピュータ (スパコ ン) を活用した数値流体力学(CFD)解析手法 JUPITER の開発、およびその計算速度のボトルネッ

その研究成果として、CPU スパコンを用いた 1mm 格子解像度のバンドル体系の多相流体解析、さらに GPU スパコンを用いた高速化(2021 年度課題)に より 0.6mm 格子解像度の解析を実現した。しかし ながら、以上の解析においても、実験結果 [Ren et al., Meas. Sci. Technol., 2018]のボイド率を定量的 に再現できておらず、更なる高解像度化と気液界面 モデルの高精度化が必要となっている。

上記課題に対して、今年度の JHPCN 課題では、 従来の界面追跡モデル(THINC-WLIC法)と比較し て、界面方向への逆拡散項を加えることで数値拡散 を抑えることが可能な手法である Phase Field 法の 改良版、およびその発展系である Multi-Phase Field 法を適用することで気液界面捕獲手法を高精度化す る。

以上の開発により、原子力分野の熱流動解析や産 業応用分野の冷却システム等、多数の気泡を含む工 学問題における二相流体解析の高精度化が期待でき る。

3. 当拠点の公募型研究として実施した意義

本研究課題では、原子力気液二相流解析コードを GPU スーパーコンピュータ向けに開発しており、ブ ロック型 AMR 法を適用した圧力 Poisson 解析の高 速化や、最新の界面捕獲手法である Multi-Phase クとなる圧力 Poisson 解法の高速化を実施してきた。 Field 法などの知見が必須となる。 そこで、 それらを

有する東工大・東大と共同研究を実施することで、 初めて研究課題が達成できる。

4. 前年度までに得られた研究成果の概要

本課題の基盤となる JUPITER コードは、研究協力 者の山下、小野寺等と共に実験の代替に向けた検証 を進めてきた。また、研究代表者の所属するシステ ム計算科学センターでは、Poisson 解法の CPU・GPU 向けの高速化として、MG 法や省通信手法などの計 算アルゴリズムおよび最適化を行ってきた[参考文 献 1-3]。前年度までの研究成果として、Poisson 解 法の高速化とバンドル体系の気液二相流解析を以下 に示す。

(a) Poisson 解法の高速化

ブロック AMR 法を適用した格子に対して、ブロッ ク間およびブロック内の格子間の依存関係を階層的 な参照により解決し、さらにブロック内の格子デー タを GPU キャッシュ (shared memory) に読み込 み再利用することで、収束性と高速計算を両立した 前処理手法 (CRMG-CG 法) を提案した。CR-MG-CG 法では CG 法に MG 法前処理を適用し、さらに MG 法のスムーザとして CR-SOR 法を使用する。図1に 8x8 バンドル体系に対する Poisson 解法の収束履歴 を示す。従来の RB-SOR 法前処理付き CG 法 (P-CG 法) では、収束まで約1300回の反復が必要なのに対 して、MG 法を適用した MG-CG 法では約 200 回、 提案手法である CRMG-CG 法では約 100 回と、大幅 に収束性が改善した[参考文献1]。一方で、Poisson 解法の前処理が計算時間の大部分を占めており、更 なる高速化の余地が残っていることを確認した。

図1 8x8 バンドル体系に対する Poisson 解法の収 束履歴。1024x1024x3072 格子相当。

2021 年度には上記課題に対して、混合精度の前処理 手法による前処理の高速化を実施した[参考文献4]。 性能測定の計算条件として、5x5 バンドル体系にお ける直交格子の384x384x6144 相当を設定した。図 2に上記解析の収束履歴を示す。Poisson 解法とし て、P-CG 法および CRMG-CG 法を比較した。CRMG-CG 法の前処理として、倍精度計算(fp64)、単精度 計算(fp32)、単精度計算・半精度通信(fp32—fp16) を採用した。

(B) 計算時間一収束斬差

図2 P-CG法(青線)およびCRMG-CG法(倍精 度計算 fp64: 橙線、単精度計算 fp32: 緑破線、単 精度計算-半精度通信 fp32-16:赤点線)の収束履歴) (A)の収束履歴より、P-CG 法の 900 回に対して、 CRMG-CG 法では 100 回へと収束性を劇的に改善し た。また、CRMG-CG 法の混合精度を用いた 2つの 条件では、いずれも倍精度と同様の収束履歴となる ことを確認した。(B)の計算時間の比較では、前処 理に単精度を採用することで、倍精度に対して 75% 程度までコストを削減した。一方で、通信に半精度 を用いた条件(fp32-16)では、単精度の条件とほぼ 同じコストとなり、期待通りの高速化が実現されな かった。また、前処理に半精度計算(float16、もし くは bfloat16)を採用した条件での計算も実施した が、Poisson 解法が収束しない結果となった。

(b) バンドル体系の気液二相流解析

原子力工学分野の CFD に対する大規模計算として、 バンドル体系の気液二相流体解析を実施した。計算 条件として、ブロック構造 AMR 格子版の JUPITER-AMR に 0.58mm 解像度(直交格子の 128x128x2048 相当)を設定すると共に、10秒間(約500,000ステ ップ)の解析を実施した。統計量として、サブチャン ネル内のボイド率の確率密度分布を、直交格子版 JUPITER (1mm 格子解像度) および実験結果[Ren et al., Meas. Sci. Technol., 2018]と比較した(図 3)。実験の流動形式として、ボイド率が0付近の確 率密度分布が最も高い気泡流 (bubbly flow) が観測 されているが、ボイド率が0(流路内が液体のみ)の 確率密度分布が実験と比較して過大評価する結果と なった。GPU を用いた JUPITER-AMR の開発によ り、CPU を用いた従来の直交格子版 JUPITER と比 較して、高解像度かつ高速な解析を実現し、実験結 果により近い確率密度分布を再現できたものの、ボ イド率 0.1 以上の領域を過大評価しており、この改 善が今後の課題として示された。

図3 サブチャンネル内のボイド率の確率密度分布。 青線:JUPITER-AMR(0.58mm 解像度)、白丸:直 交格子版 JUPITER(1mm 解像度)、赤線:実験結果

参考文献

[1]N. Onodera, Y. Idomura, Y. Hasegawa, S. Yamashita, T. Shimokawabe, and T. Aoki, "GPU

Acceleration of Multigrid Preconditioned Conjugate Gradient Solver on Block-Structured Cartesian Grid", HPC Asia 2021, 2021.

[2]Y. Idomura, T. Ina, Y. Ali, and T. Imamura, "Acceleration of fusion plasma turbulence the simulations using mixed-precision communication-avoiding Krylov method", Proceedings of SC 2020, p. 1318 - 1330, 2020 [3] Y. Idomura, T. Ina, S. Yamashita, N. Onodera, et al., "Communication Avoiding Multigrid Preconditioned Conjugate Gradient Method for Extreme Scale Multiphase CFD Simulations", ScalA'18 workshop in SC18, pp. 17 - 24, 2018. [4] 小野寺 直幸、井戸村 泰宏、朝比 祐一、長谷川 雄太、下川辺 隆史、青木 尊之、"ブロック型適合細 分化格子での Poisson 解法の混合精度演算による高 速化"、日本計算工学会第 26 回計算工学講演会 (5/26-28、オンライン)

5. 今年度の研究成果の詳細

2022 年度は前年度に引き続き、Poisson 解法と原 子力分野の気液二相流体解析の高度化を進める。 Poisson 解法では半精度演算特有の課題の解決を実 施し、気液二相流体解析ではバンドル体系解析の精 度向上に向けて界面捕獲手法の改良を実施した。

(a) Poisson 解法の最適化

ヤコビ前処理を用いた混合精度クリロフソルバは、 前処理が fp16 や bf16 などの低精度で計算される場 合に、著しく収束性が低下することがある。この収 束性の低下は、低精度へのデータ変換の丸め誤差に よって対角優位性が崩れることが原因であることが 分かっている。そこで、上記問題を解決するために 元の行列データの対角優位性を保つようにデータ変 換する方法を提案した。提案手法の性能測定を P-CG 法、P-BiCGstab 法、P-GMRES(20)法に対して実施し た。低精度の丸め方向は CUDA に備わっている round-nearest、round-up、round-down、roundtowards-zero を利用して制御した。このデータ変換 は、主反復の前に1回だけよばれる為、コストは無 視できるほど小さい。図4に示すように、従来の round-nearest に基づくデータ変換では、対角要素と 非対角要素の丸め誤差の差によって収束特性が周期 的に変化するが、提案する対角優位丸めでは周期的 な収束性の悪化を防ぐことに成功した[研究成果2]。

図 4 P-CG 法の反復回数のスケーリング係数 c 依 存性

(b) Phase Field 法を適用したバンドル体系解析

2021 年度に新たに導入した Phase Field 法 (Conservative Allen-Cahn (CAC)方程式)に基づく 界面捕獲手法によって、それ以前まで採用されてい た界面モデル(THINC-WLIC 法)の VOF 剥がれを改 善することに成功したが、依然としてバンドル体系 の実験結果を再現するには至っていない。

2022 年度には、まず Phase Field 法の最適化を実 施し、それをバンドル体系解析に適用した。従来の Phase Field 法では、界面に働く逆拡散は速度の最大 値を用いて全計算領域に一様に定義されるが、本来 ならば界面の修正強度は界面拡散の大きさに応じて 空間的に変化させるのが適切であると考えられる。 また、界面の修正強度を意味する Phase Field 変数 のモビリティ Mは、小さすぎると界面を一定幅に保 てず、大きすぎると計算格子に沿った界面形状に変 形してしまうため、一様分布では計算領域全体に適 切な Mを設定することができない。そこで、モビリ ティ M に空間分布を仮定し、局所的な速度場に応じ て適切な M を設定可能な Modified conservative Allen-Cahn (MCAC) 方程式を提案し、2次元 Zalesak 問題や3次元液滴振動問題などの基礎検証 において CAC よりも精度良く計算できる事を確認 した。本手法を原子力気液二相流解析に適用した。

図 5 (a) 5x5 バンドル計算体系, (b) 計測箇 所近傍, (c) バンドル間断面の速度分布

図6サブチャンネル内のボイド率の確率分布 図5に5x5バンドル解析の(a)計算体系全体,(b)ボ イド率計測箇所近傍の拡大図,(c)バンドル間断面の 速度分布の様子を示す。計算条件としてブロック構 造 AMR 格子版の JUPITER-AMR に1.09 mm 格子 解像度(64 x 64 x 1088)を設定し、空気および水

の見かけ速度 j=0.10m/s, j=0.034m/s を計算領域 下部のオリフィスから流入させ、10秒間(約60万 ステップ)の解析を実施した。統計量としてサブチ ャンネル内のボイド率の確率密度分布を計測し、提 案手法(MCAC)を従来手法(CAC)および実験結 果 [Ren et al., Meas. Sci. Technol., 2018]と比較し た(図6)。流動様式としてボイド率が0.0付近にピ ークをもつ気泡流が観測された。CAC や 2021 年度 以前の結果(図3)と比較してピークが MCAC で改 善されたが、全体的な分布は実験結果と一致せず、 ボイド率が高めの結果となった。気泡上昇計算結果 の界面の動きを観察すると、オリフィスから流入し た気泡は周りの気泡との合体を繰り返しながら上昇 しており、特に流路中央にて連鎖的な合体が多く観 測された。Phase Field 法をはじめとする界面捕獲手 法では数格子程度まで接近した気泡同士は物理条件 とは関係なく合体してしまうという特徴があり、ボ イド率の増大に繋がったと考えている。

(c) Multi-Phase Field 法を用いたバンドル体系解 析

気泡同士の非物理的な合体を抑制し、バンドル体系 解析におけるボイド率の解析精度を向上させる目的 で CAC-type の Multi-Phase Field(MPF)法の導入に 着手した。

従来の MPF 法は複数の相の合計値は保存するが、個 別の相は保存しないという特徴があり、バンドル体 系解析のように長距離・長時間解析を実施すると気 泡が消滅する可能性があるという問題があった。そ こで、基礎方程式を保存形式に修正することで、相 の合計値だけでなく個別の相も保存させることに成 功した。検証テストとして、3相の2次元界面移流 計算を実施し、保存していることを確認した。

従来の界面捕獲手法で発生していた「気泡同士の非 物理的な合体」を抑制する効果の検証として、水平 に並んだ2つの気泡上昇解析を実施した。先行研究 [Zhang et al., Phys. Rev. Fluids, 2018]の報告によ ると、実験で観測された気泡同士の反発現象を計算 で再現するためには界面付近の格子解像度を気泡直 径に対して 1/1600 以下にする必要があるが、実問 題においてそのような高解像度計算を実施すること は困難である。そこで、開発した保存型 MPF 法を気 泡上昇計算に適用し、気泡反発の再現を試みたとこ ろ Zhang(2018)らの計算結果の 1/50 の解像度で再 現可能であることが明らかになった(図7)[研究成 果4]。

図7 MPF および PF を用いた2つの気泡上昇の軌 跡(D=2.8mm, S=1.65D, D=32Δx)。

図8 バンドル体系解析における気泡界面の様子 MPF を用いたバンドル体系解析に適用するために は数千個以上の気泡を個別に計算する必要があり、 Active Parameter Tracking (APT) 法による省メモ リ化を用いないと計算はできない。現在、解析コー ドに APT を実装していないため、10 相 (水1相、 気泡9相)を用いた試し計算を実施して気泡サイズ の分布を PF の結果と比較した (図8)。MPF の結果 で同じ色の気泡合体が確認されるものの、気泡合体 が抑制された事によって PF よりもサイズの小さな 気泡が分布することを確認した。

6. 進捗状況の自己評価と今後の展望

2022 年度は、(a)Poisson 解法の最適化、(b)Phase Field 法を適用したバンドル体系の解析、および (c)Multi-Phase Field 法を適用したバンドル体系解 析、を実施した。

(a)の Poisson 解法の最適化では、混合精度前処理 を fp16 や bf16 のような低精度で計算する際に収束 性が著しく低下することがある問題を、対角優位丸 めによるデータ変換を用いることで解決した。今後 は気液二相流体解析のような収束性が厳しい問題に 対して本手法を適用し、バンドル体系解析の高速化 を実施する。

(b)の Phase Field 法を適用したバンドル体系の解 析では、まず Phase Field 変数の最適化を実施した。 局所的な速度場から最適なモビリティを適用できる ように、モビリティに空間分布を仮定した手法 (MCAC)を提案し、界面捕獲法の精度を向上した。 本手法を用いて原子力工学分野の CFD 解析である 5x5 バンドル体系解析を実施し、ボイド率の確率密 度関数を評価した結果、2021年度以前の結果を改善 することができたが、ボイド率が 0.1 以上の分布を 過大評価している。この原因として、2~3格子程 度まで接近した気泡の非物理的な合体が考えられる が、通常の界面捕獲法による解決は難しい。そこで、 個別の気泡に対して独立に界面捕獲を行う Multi-Phase Field 法を適用し、その合体を制御するモデル を構築することでボイド率分布を改善できると考え ている。

(c)の Multi-Phase Field 法を適用したバンドル体 系解析では、相全体の合計値だけでなく個別の相も 保存するような基礎方程式の修正や、気泡反発現象 の再現などの基本的な検証を実施した。バンドル体 系解析では数千以上の気泡を計算する必要があるた め、Active Parameter Tracking (APT) 法と呼ばれ る省メモリ化手法を実装しなければならないが、本 年度の研究では未実装であるため、MPF によるバン ドル体系解析は未達となった。2022 年度の継続課題 にて、APT による省メモリ手法を実装や気泡上昇計 算に対する PF 変数の最適化、流入出境界条件の最適 化を実施し、バンドル体系解析の更なる高精度化を 目指す予定である。

7. 研究業績

(2) 国際会議プロシーディングス(査読あり)

T. Ina, Y.Idomura, T. Imamura, and N.Onodera, "A new data conversion method for mixed precision Krylov solvers with FP16/BF16 Jacobi preconditioners", HPC Asia 2023(2/27-3/2, Singapore).

(4) 国内会議(査読なし)

杉原健太、小野寺直幸、井戸村泰宏、山下晋、"マル チフェーズフィールド法を用いた気液二相流解析"、 第 36 回数値流体力学シンポジウム(12/14-16、オ ンライン)