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We aim at establishing performance portable implementations for high performance 
fluid simulations and developing large scale data analyses for extreme-scale 
simulations. For high performance computing, we have demonstrated that a 
performance portable implementation in C++ alone is possible without harming the 
readability and productivity. As a data-driven studies, we have developed two deep 
learning models. Firstly, we have developed a surrogate model to predict the plume 
dispersion in a complicated urban area for the emergence response capability to 
contaminant gas leakage events. Second, we have developed a deep learning based 
Sub-Grid-Scale model which allows the large eddy simulation with 1/10 of grid points 
compared to direct numerical simulations. 
 
 
 
 
 

1. Basic Information 
(1) Collaborating JHPCN Centers (Please 

choose collaborating centers) 
Tokyo 
Tokyo-Tech 
 

(2) Theme Area (Please choose one) 
Large scale computational science area 
 

(3) Research Areas (Choose one area, only for 
HPCI resource using project) 
Very large-scale numerical computation 
Very large-scale data processing 
 

(4) Project Members and Their Roles 

 Project representative Yuuichi Asahi works to 
develop a machine learning / deep learning 
(ML/DL) model to extract features from fluid 
simulation data. Shinya Maeyama performs 
the local plasma turbulence simulations. Julien 
Bigot works on the in-situ data analysis of 
GYSELA. Xavier Garbet works for theoretical 
analysis of non-local transport processes. 
Virginie Grandgirard gives the advice for the 

large scale plasma turbulence simulation. 
Kevin Obrejan gives the advice for the 
optimization of mini-apps. Thomas Padioleau 
gives the advice for state-of-the-art GPU 
implementations of mini-apps. Takashi 
Shimokawabe gives advice for large scale 
simulation and deep learning models. Keisuke 
Fujii contributes on data-driven analysis. 
Naoyuki Onodera gives the advice for the large 
scale LBM simulation. Yuta Hasegawa gives 
the optimization on GPUs. Prof. Watanabe 
comments on characteristics of local transport 
processes. Yasuhiro Idomura gives advice for 
the large scale simulations. Prof. Aoki gives 
advices about the usage of TSUBAME3.0. 

 
2. Purpose and Significance of the Research 
 In this project, we plan to proceed toward 
Exascale numerical simulations in its 
implementation and corresponding data 
analyses. For high performance computing, we 
will develop an abstract layer to handle the non-
uniform mesh while keeping the performance 
portability. For large scale data analyses, we will 
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establish a scalable data analyses method in an 
in-situ way.  
 
High performance computing 
 It is essential to explore code refactoring 
approaches in order to get a good performance 
on multi-vendor CPUs and GPUs, while keeping 
the readability and productivity. Establishing a 
performance portable approach for multiple 
apps will contribute to computational fluid 
dynamics (CFD) community as demonstrators. 
We are planning to publish our codes on GitHub 
which serve as working examples. 
 
Large scale data analyses 
 We will develop a machine learning (ML) or 
deep learning (DL) model to surrogate 
numerical simulation results completely or 
partially. Though still is a main stream, 
modeling everything by numerical simulations 
alone is getting more and more complicated on 
the way to Exascale supercomputing due to the 
ever-increased simulation and data analyses 
costs. Accordingly, we will investigate the 
potential of deep learning dedicated to CFD 
simulations on top of Exascale simulation and 
data analyses studies. 
 
3. Significance as JHPCN Joint Research 

Project 
 Improving a performance portability is a 
challenging task which needs a good 
understanding of a large variety of architectures, 
algorithms and programming models. Japanese 
group contributes on GPU optimization 
strategies with Kokkos and directives. French 
group is developing a zero-cost mesh abstraction 
library ‘DDC’ [https://github.com/Maison-de-la-
Simulation/ddc] on top of Kokkos. We expect 
good interactions between French and Japanese 
groups over performance portability, 

optimizations on AMD GPUs, and data 
structures. 
 For data analyses, international collaborations 
are necessary for both technical and physical 
reasons. French group has already succeeded to 
manage the on-memory simulation data from 
Dask scripts with PDI library (developed by Dr. 
Bigot). Japanese group offers the base scripts for 
machine learning or deep learning in the post 
hoc manner. By coupling these technologies, we 
can achieve in-situ ML for numerical 
simulations. For physical understanding of the 
obtained results, our team includes the well-
known experts in turbulence studies.  
 The multi platforms offered by JHPCN 
framework are essential to establish the 
performance portable implementations over 
different devices including CPUs and 
NVIDIA/AMD GPUs. In addition, the large 
storage offered by JHPCN is essential for deep 
learning or machine learning study.  

 
4. Outline of Research Achievements up to 

FY2021 (Only for continuous projects) 
 This is a new project. 
 

5. Details of FY2022 Research 
Achievements 

High performance computing 
 We have developed a performance portable 
version of a 4D (2D+2V) kinetic plasma 
simulation code with C++ parallel algorithm 
(stdpar) to run across multiple CPUs and GPUs. 
Using the language standard parallelism stdpar 
and the proposed language standard multi-
dimensional array support mdspan, we have 
demonstrated that a performance portable 
implementation is possible without harming the 
readability and productivity. The most 
important benefit of this approach is the lifetime 
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of the application which can technically be 
elongated to the lifetime of the language which 
should be longer than that of libraries, directives, 
and architectures. We have compared the 
performance of mini-application with Thrust, 
Kokkos, OpenMP and stdpar over Intel Icelake, 
NVIDIA V100 and A100 GPUs and AMD MI100 
GPU. It should be noted that stdpar is 
unavailable on AMD MI100 for the moment.  
 

 Figure 1 shows the performance of the entire 
mini-app in terms of acceleration with respect to 
the baseline OpenMP version on Icelake. The 
stdpar version exhibits performance in the 
range of ±20% to the Kokkos version on Icelake, 
V100, and A100 (Kokkos is known as one of the 
most promising performance portable layers). 
The stdpar version demonstrated the best 
overall performance on A100. It is concluded 
that stdpar has competitive performance 
portability. Thanks to the mdspan, we can 

access to multi-dimensional data which 
improves the readability with small 
performance overheads. The most importantly, 
we can achieve a readable and performant code 
just with the standard language. Thus, stdpar 
can be a reasonable choice as an Exascale 
performance portable implementation assuming 
it becomes available on AMD and/or Intel GPUs 
in the future. This work has been presented in 
the supercomputing conference [3]. The source 
codes are available for public use [4]. 
 Our production level application CityLBM has 
also been ported to AMD MI100 GPUs with MPI 
+ HIP. After optimizations, the performance on 
MI100 is between those on V100 and A100, as 
expected from the peak memory bandwidth. 
 The optimization techniques developed in 
JHPCN projects have been applied to the 
plasma turbulence code GKV to achieve a 
remarkable performance on Fugaku. Thanks to 
large scale simulations on Fugaku, a novel 
suppression mechanism of turbulent electron 
heat transport has been demonstrated [2].  

 

Large scale data analyses 
 We have developed multiple AI models. We also 
succeeded to integrate Python script for machine 
learning and a C++ simulation code using the 
PDI library [https://pdi.julien-bigot.fr]. 
 Firstly, we have developed a DL model to 
predict the plume dispersion in a complicated 
urban area for the emergence response 

Fig. 2 Prediction of plume dispersion with 
CNN/Transformer model. 

Fig. 1 Performance comparison for MPI 
version of mini-app with Thrust, Kokkos, 
OpenMP and stdpar. The problem size is 
fixed as (Nx, Ny, Nvx, Nvy) = (128, 128, 128, 
128) and the number of iterations is 40. We 
used 2 MPI processes corresponding to 2 
Icelake sockets, V100, A100 and MI100 
GPUs. 
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capability to contaminant gas leakage events [1, 
5]. Our model can predict the ground level plume 
concentration from realistically available data 
such as the time series monitoring data at a few 
observation stations, and the building shapes 
and the source location (Fig. 2).  
 It is also shown that the same model can be 
applied to predict the source location and 
amplitude from the time series monitoring data. 
 Secondly, we have developed a deep learning 
based sub-grid-scale (SGS) model to extract the 
effects of small-scale fluctuations from 
sequential turbulence simulation data. Based on 
the projection operator method, we have 
constructed the linear (so-called Mori-Zwanzig 
(MZ) projection operator) and nonlinear (using 
neural networks) projection operators from the 
data.  

 Figure 3 shows the spatio-temporal evolution of 
1D Kuramoto-Sivashinsky, with direct 
numerical simulations (DNS) and LES-NN 
models. LES-NN model employs the SGS 
operator trained on a large amount of DNS data. 
We employed the Transformer architecture to 
model the SGS operator from DNS sequential 
data. In the LES model, we only use 1/10 of grid 
points in DNS wherein the scale of instability 
source and dissipation scale are not even 

resolved (see Fig. 4). We also confirmed good 
agreements of time average of energy spectral 
with DNS, LES (MZ) and LES (NN) models as 
shown in Fig. 4.  

 

6. Self-review of Current Progress and 
Future Prospects 

High performance computing 
 In 2022, we have newly explored the performance 
portable implementation with C++ parallel 
algorithm (stdpar). We have also ported and 
optimized our production code on AMD GPUs. 
Although we have initially planned to rebase our 
mini-apps with ‘DDC’, we have not completed this 
task yet (partially done by French group). This 
remains as a future task for 2023.  
 In 2023, we further explore the performance 
portable and asynchronous implementation in C++ 
“senders/receivers” that is proposed for C++26. We 
are planning to implement our mini-apps in 
“senders/receivers” and compare the performance 
with the SYCL version which also allows 
asynchronous executions. We aim to establish a 
baseline implementation for asynchronous 
execution of fluid simulation codes while keeping 
the performance portability. 
 
Large scale data analyses 
 In 2022, we have successfully developed DL 

Fig. 3 Spatio-temporal evolution of 
fluctuations with DNS and LES. We apply the 
low-path filter to the DNS data for comparison. 
In LES-NN model, we first run DNS up to t=200 
and LES-NN model is enabled. 

Fig. 4 Time averaged energy spectral with DNS, 
LES-MZ and LES-NN models. 
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models that surrogate simulation results or assist 
the simulation itself. We have integrated the 
incremental PCA script into the Voice 1D+1V code 
in C++ using the PDI library. The AI-assisted fluid 
simulation models have just been applied for 
simple 1D cases as a proof-of-concepts. In 2023, we 
will aim at demonstrating that these approaches 
are applicable to 2D fluid simulations. We will 
keep our implementation in a scalable manner to 
illustrate a pathway to the production codes. We 
will implement the simulation code in C++ and the 
AI code in Python, which are coupled using PDI 
library for flexibility.  
 
7. List of Publications and Presentations 

Please see an example in a comment above 

(1) Journal Papers (Refereed) 
[1] Y. Asahi, N. Onodera, Y. Hasegawa, T. Shimokawabe, 

H. Shiba, and Y. Idomura, “CityTransformer: A 

Transformer-Based Model for Contaminant Dispersion 

Prediction in a Realistic Urban Area”, Boundary-Layer 

Meteorology 186, 659-692 (2023). 

[2] S. Maeyama, T.-H. Watanabe, M. Nakata, M. Nunami, 

Y. Asahi, and A. Ishizawa, “Multi-scale turbulence 

simulation suggesting improvement of electron heated 

plasma confinement”, Nature Communications 13, 3166 

(2022). 

 
 

(2) Proceedings of International 
Conference Papers (Refereed) 

[3] Y. Asahi, T. Padioleau (+), G. Latu (+), J. Bigot (+), V. 

Grandgirard (+) and K. Obrejan (+), "Performance 

portable Vlasov code with C++ parallel algorithm," 2022 

IEEE/ACM International Workshop on Performance, 

Portability and Productivity in HPC (P3HPC), Dallas, 

TX, USA, 2022, pp. 68-80, doi: 

10.1109/P3HPC56579.2022.00012. 

 

(3) Presentations at International 
conference (Non-refereed) 
 

(4) Presentations at domestic conference 
(Non-refereed) 
 

(5) Published open software library and so 
on. 

[4] Examples of performance portable 

implementations of mini-applications in Kokkos, 

OpenMP, Thrust and stdpar. 

https://github.com/yasahi-hpc/P3-miniapps 

[5] A Deep learning model for plume concentration 

prediction in the realistic urban area  

https://github.com/yasahi-hpc/CityTransformer 

 

(6) Other (patents, press releases, books 
and so on) 


