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Abstract  
Coronary heart disease is a leading cause of death worldwide. The main cause of 
coronary heart disease is coronary stenosis, which is mainly due to atherosclerosis. 
Recently, computational fluid dynamics (CFD) has been used to compute the blood 
flow for patient-specific artery with medical images in diagnosing ischemic stenosis. 
However, CFD simulation requires a lot of computational resources and time. 
Therefore, in order to use CFD in clinical practice, it is essential to accelerate CFD 
analysis. In this project, we will use deep learning to build a fast surrogate for 
approximating the 3D blood flow simulation. In this year, we have developed a 
method to predict the results of time-dependent flows by using patch-based 
convolutional neural network (CNN) inference. By considering time-sequence 
data as three-dimensional data with two spatial dimensions and one temporal 
dimension, we apply to them a model consisting of 3D convolutional and de 
convolutional layers. This method allows us to apply the same neural network 
architecture to any size of 2D input data. 
 

1. Basic Information 
(1) Collaborating JHPCN Centers  

Tokyo  
 

(2) Research Areas 
n Very large-scale numerical computation 
n Very large-scale data processing 
o Very large capacity network technology 
o Very large-scale information systems 

 
(3) Roles of Project Members 

• Takashi Shimokawabe (The University 
of Tokyo): Development of a method for 
predicting large-scale simulation 
results 

• Weichung Wang (National Taiwan 
University): Development of deep 
learning, surrogate modelling and 
algorithm designs 

• Naoyuki Onodera (Japan Atomic 
Energy Agency): Advice and support to 
apply deep learning to CFD 
simulations 

• Kengo Nakajima (The University of 
Tokyo): Advice and support for large-
scale computations 

• Toshihiro Hanawa (The University of 
Tokyo): Advice and support for large-
scale deep learning 

• Masashi Imano (The University of 
Tokyo): Advice and support for using 
OpenFOAM 

• Hayato Shiba (The University of 
Tokyo): Advice and support of CFD and 
medical simulations 

• Hiromichi Nagao (The University of 
Tokyo): Advice on machine learning 
methods 

• Hiroya Matsuba (The University of 
Tokyo): Advice on machine learning 
execution environment 

• Shota Suzuki (The University of 
Tokyo): Development of CFD 
simulations 

• Takuro Omori (The University of 
Tokyo): Development of CFD 
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simulations 
• Akira Hatakeyama (The University of 

Tokyo): Development of CFD 
simulations 

• Cheng-Ying Chou (National Taiwan 
Normal University): Advice and 
support of CFD and medical imaging 

• Che-Yu Hsu (National Taiwan 
University Hospital): Advice and 
support of medical backgrounds and 
knowledge 

• Mei-Heng Yueh (National Taiwan 
Normal University): Development of 
computational geometry 

• Yuehchou Lee (National Taiwan 
University): Development of CFD 
simulations and deep learning 

 
2. Purpose and Significance of Research 

Coronary heart disease is a leading cause 
of death worldwide. The main cause of 
coronary heart disease is coronary stenosis, 
which is mainly due to atherosclerosis. 
Fractional flow reserve (FFR) is defined as 
the ratio between distal pressure and 
proximal pressure and has been used as a 
standard tool to diagnose the severity of 
coronary stenosis. Recently, computational 
fluid dynamics (CFD) has been used to 
compute the blood flow and FFR for patient-
specific artery. Some clinical trials 
demonstrated that the method combining 
CFD and medical image is better than the 
method using medical image solely in 
diagnosing ischemic stenosis. However, this 
method can be computationally demanding 
because it may take hours to perform CFD 
simulation. This drawback may limit the 
usage of this method in clinic practice. 
Therefore, it is indispensable to accelerate 

the process of CFD analysis. 
 In this study, we will use deep learning to 
build a fast surrogate for approximating the 
3D blood flow simulation. We will also 
develop a parallelization method to make it 
possible to apply the deep learning to large-
scale geometry. This method divides the 
large-scale geometry into multiple parts and 
applies deep learning in parallel to them. 
This makes it possible to approximate a 
large-scale 3D blood flow simulation.  
 

3. Significance as JHPCN Joint Research 
Project 

In this project, we are developing a fast 
surrogate that approximates 3D blood flow 
simulation using deep learning and a 
parallelization method of the surrogate for 
applications with large-scale geometry. 
Since we perform a large number of CFD 
simulations with large-scale geometry to 
generate training data sets and train deep 
neural networks (DNN) with these data sets 
to build the surrogate, a lot of 
computational resources are indispensable 
to realize this proposal. We use the lattice 
Boltzmann method (LBM) as CFD solver. 
Since LBM can achieve high performance 
on GPUs, we have exploited Reedbush-H/L 
and Wisteria/BDEC-01 (Wisteria) to 
generate the training data sets. We have 
utilized Oakforst-PACS, Reedbush-H/L and 
Wisteria for training DNN, since the deep 
learning frameworks we use can achieve 
high performance with Xeon Phi, which are 
installed on Oakforst-PACS, and GPUs, 
which are installed on both Reedbush-H/L 
and Wisteria. Due to queue configurations, 
we have used Reedbush-H for developing 
DNN models and Reedbush-L for long-time 
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running for training. After the end of 
Reedbush-H/L's operation, we have used 
mainly Wisteria. This project is being 
carried out by collaborative research by 
blood flow experts, CFD experts, the experts 
of large-scale deep learning, and HPC 
experts. Therefore, implemented as a 
JHPCN joint research project, this project 
has been able to effectively carry out 
collaborative research and achieve research 
results. 
 

4. Outline of Research Achievements up to 
FY2020 

 In our previous research, we have 
developed a method to predict the 
simulation results in large computational 
domains in 2D. This method combines 
neural network inference and boundary 
exchange. It exploits neural network to 
predict the simulation results of each 
subdomain and exchanges boundary 
between neighbor subdomains to maintain 
consistency in them. This method allows us 
to apply the same neural network 
architecture to any size of input data. We 
performed steady-state flow simulations 
with objects of simple shapes by using LBM. 
Using these results as training data sets, 
we trained the our neural networks. By 
using these networks with boundary 
exchange, our proposed method 
successfully predicted the results of a large-
scale 2D steady flow. 
 We originally used Chainer as the 
framework for deep learning. However, 
since the development of Chainer was 
discontinued, we replaced it with PyTorch. 
We have introduced Horovod, which 
enables us to train the convolutional neural 

network (CNN) models on multiple GPUs. 
We have extended the 2D method to predict 
large-scale 3D steady flow simulations. 
Unlike the results of 2D prediction, the 
results of 3D prediction by the proposed 
method still have a large error at the 
boundary regions of subdomains.  
 

5. Details of FY2021 Research 
Achievements 
 In the first half of this year, as originally 
planned, we have improved our code of LBM 
used for generating data sets to train deep 
neural network models. We have introduced 
the D3Q27 model and the cumulant LBM in 
our code, replacing the D3Q19 model, in order 
to be able to compute with higher accuracy 
and stability.  We have also been 
investigating ways to generate complex 
geometries like blood vessels using Python's 
trimesh library. 

The original plan was to extend the 
prediction method developed for two 
dimensions to three dimensions. However, 
the development of a 3D prediction method 
has not yet been completed and its results 
still have a large error at the boundary 
regions of subdomains. It is difficult to make 
predictions in 3D using a dataset of the 
geometry of actual blood vessels. Therefore, 
in the second half of this year, we began 
development of a prediction method for time-
dependent flow, which was originally planned 
to be started after the development of the 
prediction method for 3D steady flow was 
completed.  Since time-dependent flow must 
be considered in blood flow simulations in 
order to obtain more accurate results, this 
development itself is a necessary technical 
component for the overall progress of this 



Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures 
Final Report for JHPCN Joint Research of FY 2021 

4 

project. 
In this section, we describe the overview 

of the proposed prediction method for 2D 
simulations of time-dependent flow. 

 
5.1 Dataset 

We explain the data set of the neural 
network used in our method. 

First, we place one or two cylinders or 
triangular polygons in a 1024 × 1024 
computational domain and simulate a fluid 
with a Reynolds number of 100 flowing from 
negative to positive in the 𝑥 direction by the 
lattice Boltzmann method (LBM). The number, 
type, size, and position of the cylinders or 
polygons to be placed are changed to perform 
several time-dependent flow simulations.  
The developed network model uses the 
computational results with a 64 × 64 region of 
multiple timesteps as input and predicts the 
subsequent frames with a 64 × 64 region of 
multiple timesteps. To create the dataset, we 
run 24 sets of LBM simulations. Three frames 
at 100-step intervals are stored as inputs after 
a certain time step, and three frames at 100-
step intervals following the inputs are stored 
as prediction targets. From a computational 
domain of 1024 × 1024, we mechanically cut 
out 200 pieces of 64 × 64 regions allowing for 
some overlap of regions and without 
considering the arrangement of objects. In 
order to use the signed distance function 
(SDF), which represents the distance to the 
geometry, as the input, we also prepare the 
SDF data corresponding to each 64 × 64 
computational domain. Since the fluid is time-
varying, training data are extracted for 
multiple time steps from a single simulation 
execution. To enable data augmentation and 
to make the dataset independent of the 

direction of fluid flow, the rotated and flipped 
results of the LBM simulations are also added 
to the dataset, resulting in a final dataset of 
65,021 for training and 27,867 for evaluation. 

 
5.2 Neural network model 

Figure 1 shows the structure of the 
neural network used in this method. The 
inputs to the neural network are the fluid 
density, the velocities in the 𝑥 and 𝑦 directions, 
and the SDF representing the object shapes 
for three time frames in a 64 × 64 region. The 
output is a three-frame prediction of the fluid 
density and velocities in the 𝑥 and 𝑦 directions. 
The output should be the predictions for the 
three time steps following the input data. The 
network used in this method consists of two 
major structures: the first half consists of 
multiple 3D convolutional layers, and the 
second half consists of multiple 3D 
deconvolutional layers. In order to predict the 
time dependent flow of the fluid, these time 
sequence data are considered as three-
dimensional data, consisting of two 
dimensions in the 𝑥 and 𝑦 directions with a 
time axis as the third dimension. These data 
are trained in a network structure with 3D 
convolutional and deconvolutional layers. The 
tanh function is used as the activation 
function, and batch normalization is 
introduced in all layers except the input and 
output layers. In order to improve the 
prediction accuracy, skip connections used in 
U-net are introduced between a convolutional 
layer and its corresponding deconvolutional 
layer. The network model is implemented 
using PyTorch. 
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5.3 Training model and predicted results for time-
dependent flow 

For the training of this model, we use the 
Data/Learning Nodes (Aquarius) of the 
Wisteria/BDEC-01 supercomputer system 
installed at the Information Technology 
Center, the University of Tokyo. The 
Data/Learning node group (Aquarius) consists 
of 45 computation nodes with Intel 3rd 
generation Xeon scalable processors (Ice 
Lake) and NVIDIA A100 Tensor core GPUs. 
Each node is equipped with 8 GPUs. We use 
one node with 8 GPUs for training. We use 
Xavier for initialization, Adam for 
optimization, and Horovod as a framework for 
distributed deep learning training. We use the 
mean squared errors of the ground truth and 
predicted values of the density and velocity 
fields at each grid point for a loss function. We 

use, in addition, the mean squared error of the 
ground truth and predicted values of their 
spatial gradients. Computational time was 
386 minutes for training the proposed neural 
network with 1500 epochs. 

The neural model targets a 64 × 64 region. 
However, in order to predict the results of a 
large-scale simulation, it is necessary to be 
able to predict the results for a computational 
domain with an arbitrary size. Therefore, we 
exploits patch-based CNN inference for the 
prediction for the entire computational 
domain as shown in Figure 2. The entire 
computational domain is divided into a large 
number of 64 × 64 regions with each patch 
region overlapping. We apply the CNN 
inference to each 64 × 64 region. At each grid 
point, since several predicted values are 
obtained from the inference of the neural 
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Figure 1: Network architecture for 2D simulations of time-dependent flow. 

Figure 2: Prediction procedure for time-dependent flow with 3 frames of input and subsequent 3 
frames of output. Patch-based CNN inference is used for prediction. 
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network, the average of these values is used 
as the final prediction result. In this study, 
three frames for every 100 steps of the 
simulation are used as input, and the 
following three frames are predicted. To 
predict further results, the prediction results 
obtained by the neural network are used as 
input to predict the next three frames. By 
repeating this process, the prediction is 
advanced in time.  

In Figure 3, the neural network predicts 
the results of 15,300, 15,400, and 15,500 time 
steps using three frames of 15,000, 15,100, 
and 15,200 time steps as input. By repeatedly 
applying the CNN inference spatially and 
temporally, the neural network predicts the 
subsequent three frames of 15,600, 15,700, 
and 15,800 time steps. In other words, the 
prediction results are obtained every 100 
steps between 15,300 and 15,800 time steps. 
This figure shows the results of the LBM 

ground truth of the velocity in the 𝑥 direction 
(𝑢) and its prediction by the neural network, 
and those of the velocity in the 𝑦 direction (𝑣) 
and its prediction by the neural network from 
the top. Although only the simulation results 
of one frame per 100 steps are used, it can be 
seen that the proposed neural network is able 
to predict the simulation results by LBM well. 
 

6. Progress during FY2021 and Future 
Prospects 

In this year, as originally planned, we 
have improved the code for the lattice 
Boltzmann method (LBM) used to generate 
datasets for training deep neural network 
models. The D3Q27 model and cumulant 
LBM were introduced into the code in place of 
the D3Q19 model for higher accuracy and 
stability. We have started development of a 
method for predicting time-dependent flow, 
which was scheduled to begin after the 

LBM ground truth (v)

CNN prediction (v)

LBM ground truth (u)

CNN prediction (u)

Figure 3: Prediction results over an entire computational domain using the patch-based CNN 
inference. The LBM ground truth and the CNN prediction of the velocities in the x and y directions 
(i.e., u and v) are shown. The images from 15000 to 15200 time steps are the input data generated 
by the LBM, and the images from subsequent time steps are the prediction results by the CNN. 
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development of the method for predicting 3D 
steady flow was completed. This development 
itself is a necessary technical component to 
the overall progress of this project, since 
blood flow simulations must need time-
dependent flow in order to obtain more 
accurate results. 

The research plan for the next year is as 
follows. We will continue to improve our 
methods for predicting the results of 3D 
large-scale steady-state flow simulations. We 
have found that the patch-based CNN 
inference developed this year for predicting 
time-dependent flows is one of the effective 
way. By using this patch-based CNN 
inference, the accuracy of the prediction for 
the steady flow simulations may be improved. 
After we are able to predict 3D steady flow 
results by using deep learning, we will 
establish a method for predicting a large-
scale 3D steady flow of the blood flow 
simulation. 
 

7. List of Publications and Presentations 
Please note that items in status of “to be 

submitted/presented” and “submitted” cannot be 

included.  

(1) Journal Papers (Refereed) 
None.    

 

(2) Proceedings of International 
Conferences (Refereed) 
[1] Yuuichi Asahi, Sora Hatayama, 

Takashi Shimokawabe, Naoyuki Onodera, 

Yuta Hasegawa and Yasuhiro Idomura, 

“AMR-Net: Convolutional Neural 

Networks for Multi-resolution Steady 

Flow Prediction”, The 2nd Workshop 

on Artificial Intelligence and 

Machine Learning for Scientific 

Applications, IEEE Cluster 2021, 

Online, Sep. 2021. 

 

(3) International conference Papers (Non-
refereed) 
[2] Shota Suzuki, Takashi 

Shimokawabe, “Acoustic simulation 

using lattice Boltzmann method by 

multi-GPU parallel computing”, 

International Conference on High 

Performance Computing in Asia-

Pacific Region (HPCAsia) 2022, 

Online, Jan. 2022.(poster) 

[3] Akira Hatakeyama, Takashi 

Shimokawabe, “Multi-GPU computing 

of moving boundary flow using 

lattice Boltzmann method”, 

International Conference on High 

Performance Computing in Asia-

Pacific Region (HPCAsia) 2022, 

Online, Jan. 2022.(poster) 

 

(4) Presentations at domestic conference 
(Non-refereed) 
[4] 鈴木翔太, 下川辺隆史, “格子ボ

ルツマン法に基づく GPU を用いた音響

解析”, 第 26 回計算工学講演会, オン

ライン開催, 2021 年 5 月.（優秀講演表

彰受賞） 

[5] 朝比祐一, 畑山そら, 下川辺隆史, 

小野寺直幸, ⻑谷川雄太, 井戶村泰宏, 

“機械学習による細分化格子に基づく 2

次元定常流予測”, 第 26 回計算工学講

演会, オンライン開催, 2021 年 5 月. 

[6] 鈴木翔太, 下川辺隆史, “埋め込

み境界法を適用した格子ボルツマン法

に基づく 3次元音響解析”, オープン

CAE シンポジウム 2021, オンライン開

催, 2021 年 12 月. 
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[7] 鈴木 翔太, 下川辺 隆史, “格子

ボルツマン法によるインピーダンス境

界を用いた音響解析手法の構築”, 日
本音響学会 2022 年春季研究発表会, オ

ンライン開催, 2022 年 3 月.  

[8] 下川辺隆史, “深層学習による流

体シミュレーション結果予測”, 第 41

回計算数理工学フォーラム, オンライ

ン開催, 2022 年 3 月.（招待講演） 

 

(5) Published library and relating data 
None. 

 

(6) Other (patents, press releases, books 
and so on) 
None. 


