$h210024-NAH

Hierarchical Low-Rank Approximation Methods on
Distributed Memory and GPUs

Rio Yokota (Tokyo Institute of Technology)

Abstract

The purpose of this research is to develop a scalable and highly optimized open source
library for hierarchical low-rank approximation of dense matrices. During the previous
JHPCN project we have extended the H-matrix code to perform not only matrix-vector
multiplications, but also matrix-matrix multiplication, LU factorization, and QR factor-
ization.We have also extended the parallelization to support not only OpenMP and MPI,
but also batched GPU kernels and task-based parallelization. The four main goals for the
fiscal year 2021 are: 1) Improving the complexity of the H-matrix LU decomposition from
O(Nlog® N) to O(N), 2) Comparison of runtimes such as ParSEC, QUARK, and StarPU for
the asynchronous execution of H-matrix LU, 3) Benchmarking of our H-matrix code against
other open source libraries, 4) Development of an H-matrix LDL decomposition. We were
able to achieve our research goal for all 4 objectives. Above that, we were able to develop
a O(N) LU factorization for dense matrices without a dependency on trailing sub-matrices.
This was not in our original plan, but is a disruptive technology that makes runtime systems
irrelevant, and is possibly the ultimate form of hierarchical low-rank approximation methods.

1 Basic Information

1.1 Collaborating JHPCN Centers
Hokkaido, Tokyo, Tokyo-Tech, Nagoya, Ky-
oto

1.2 Research Areas
- Very large-scale numerical computation

1.3 Roles of Project Members

Rio Yokota (Tokyo Institute of Technology)
Low-rank approximation using FMM and its
GPU-MPI implementation

Ichitaro Yamazaki (Sandia National Labo-
ratories) Development of distributed memory
runtime ParSEC, and blocked BLAS library
for GPU

Akihiro Ida (University of Tokyo) Feature

extension of hybrid MPI/OpenMP H-matrix
code HACApK, and its integration with Par-
SEC and block MAGMA

Takeshi Iwashita (Hokkaido University)
Application of HACApK to boundary inte-
gral solvers for electromagnetics, and opti-
mization of H-matrix-vector product

Takeshi Fukaya (Hokkaido University) De-
velopment of QR decomposition on Tensor-
Cores for low-rank approximation

Satoshi Oshima (Nagoya University) GPU
implementation of HACApK and integration
with MAGMA

Kengo Nakajima (University of Tokyo)
Extend capability of HACApK within the
ppOpen-HPC framework

Final Report for JHPCN Joint Research of FY 2021

Toshihiro Hanawa (University of Tokyo)
Support for code optimization using FPGA,
MPI, GPU

Tetsuya Hoshino (University of Tokyo)
Optimization of batched operations on GPU

Tasuku Hiraishi (Kyoto University) Dy-
namic load-balancing of HACApK

Hiroyuki Ootomo (Tokyo Institute of
Technology) Optimization of TensorCore im-
plementation

Sameer Deshmukh (Tokyo Institute of
Technology) Optimization of batched low-
rank kernels on CPU

Muhammad Ridwan Apriansyah
Budikafa (Tokyo Institute of Technology)
QR decomposition using BLR structure

Qianxiang Ma (Tokyo Institute of Technol-
ogy) GPU implementation of H2-matrix

Thomas Spendlhofer (Tokyo Institute of
Technology) Development of novel low-rank
compression schemes

Takahiro Shohata (Tokyo Institute of
Technology) Application to stochastic weight
averaging

Hana Hoshino (Tokyo Institute of Technol-
ogy) Application to reinforcement learning

Aoyu Li (Tokyo Institute of Technology)
Application to non-uniform sampling meth-
ods

Sora Takashima (Tokyo Institute of Tech-
nology) Application to vision transformer op-
timization

Xinyu Zhang (Tokyo Institute of Technol-
ogy) Application to large language models

Tomoya Takahashi (Tokyo Institute of

Technology) Application to autonomous
driving models

Kai Okawa (Tokyo Institute of Technology)
Application to visual SLAM

Sixue Wang (Tokyo Institute of Technol-
ogy) Application to second order optimiza-
tion in deep learning

2 Purpose and significance of
Research

2.1 Purpose of Research

The purpose of this research is to develop
a scalable and highly optimized open source
library for hierarchical low-rank approxima-
tion of dense matrices. Such large dense ma-
trices naturally appear in electromagnetic,
seismic, quantum, and fluid simulations, in
scientific computing. Large dense matrices
also appear in machine learning, where the
Hessian, Fisher, Covariance, and Gram ma-
trices play an important role in determin-
ing the properties of optimization and gen-
eralization of deep neural networks. Un-
like their dense counterparts which require
O(N?) time and O(N?) memory, H-matrices
can perform matrix multiplication and fac-
torization in O(Nlog?N) time and O(N)
memory, have controllable arithmetic inten-
sity, have asynchronous communication, and
can exploit deep memory hierarchy, which
makes them an ideal solver/preconditioner
for the Exascale era.

During the previous JHPCN project we
have extended the H-matrix code to per-
form not only matrix-vector multiplications,
but also matrix-matrix multiplication, LU
factorization, and QR factorization. We
have also extended the parallelization to sup-
port not only OpenMP and MPI, but also
batched GPU kernels and task-based paral-
lelization. We experimented with runtime
systems such as OmpSs, StarPU, but found
that the overhead was too large so we de-
signed our own light-weight task scheduler.
Another achievement is the lattice H-matrix

Final Report for JHPCN Joint Research of FY 2021

method, which combines the scalability of
block-low-rank methods with the favorable
arithmetic complexity of H-matrices. The
present JHPCN project extends our previ-
ous work in the direction of better scalability,
higher GPU utilization, and better accuracy
control. In particular, we will extend the pre-
vious O(N log? N) method to a new O(N)
method. We also plan to study the effect of
mixed precision in the context of hierarchical
low-rank matrices.
2.2 Significance of Research
Hardware architecture is now moving to-
wards low-precision arithmetic, backed by
the increasing demand from the machine
learning field. When such low-accuracy can
be tolerated, exact dense linear algebra op-
erations become unnecessary, and libraries
such as BLAS and LAPACK, which are at
the heart of HPC applications, can be re-
placed by hierarchical low-rank (H-matrix)
libraries that effectively do the same work
in linear time. There is still ample room
for investigation regarding the use of such
low-precision in scientific computing appli-
cations, where methods such as iterative re-
finement have recently gained interest. H-
matrices can be used as a scalable precon-
ditioner for such problems, and we aim to
quantify the advantage over existing state-
of-the-art methods in this JHPCN project.
Furthermore, batched operations on GPUs
are becoming popular and libraries such as
MAGMA and CUBLAS are providing low-
level functions that can process many small
dense matrix operations in large batches.
‘H-matrices can benefit greatly from such
batched dense linear algebra libraries, and in
doing so will be able to extract a large por-
tion of the performance of the latest GPU
and many-core architectures including Ten-
sor Cores. Since libraries like MAGMA and
CUBLAS are optimized to use Tensor Cores,
we do not have to do the implementation our-
selves.

3 Significance as JHPCN Joint
Research Project

Each member of this project has different
expertise, all of which are essential for the
development and verification of a high per-
formance H-matrix library. R. Yokota' s
group is currently developing a C++-based
H-matrix code FRANK that uses advanced
C—++ features to provide a collection of prim-
itives for performing H-matrix computation
with hybrid parallelism for MPI, OpenMP,
and CUDA over half of the project mem-
bers are students in his group. A. Ida and
T. Iwashita are developers of HACApK -
a hybrid MPI-OpenMP-CUDA implementa-
tion of the H-matrix. T. Hiraishi has experi-
ence in load-balancing for distributed mem-
ory H-matrix codes. 1. Yamazaki is the de-
veloper of dense linear algebra libraries such
as MAGMA and PLASMA. S. Oshima, T.
Hanawa and T. Hoshino have expertise in
tuning solvers for GPUs and Xeon Phi. K.
Nakajima has expertise in parallel precon-
ditioned iterative solvers. The combination
of these expertise is necessary for achiev-
ing the goals mentioned above. There are a
few existing H-matrix implementations, but
they are limited to shared memory and have
not been ported to GPUs. To our knowl-
edge, HACApK and HiCMA are the only
multi-GPU H-matrix codes available at the
moment. This could only have been done
through a JHPCN international collabora-
tion between the experts in each area.

4 Qutline of Research Achievements
up to FY2020

Up to FY2020 we have tackled various
problems regarding hierarchical low-rank ap-
proximation and its parallel implementation.
There are various derivatives of hierarchi-
cal low-rank approximation methods such
as; BLR, HODLR, HSS, H-matrix, and H?-
matrix. We started from the most basic
variant — BLR, which uses low-rank off-
diagonal blocks, but not a hierarchical ma-

Final Report for JHPCN Joint Research of FY 2021

12800
6400
3200
1600

800
400

200

Mormalized Factorization Time

100

8192 32768

131072

1.00E-04

Relative Error

1.00E-10

1.00E-16
524288

Matrix Dimension N

—&— Normalized Fac-time vs. N

regress O(N)

Factorization Accuracy

Fig. 1 Computation time (blue) of LU decomposition as a function of N and the ap-

proximation error (yellow)

trix. We started with the most basic op-
erations such as matrix-vector and matrix-
matrix multiplication. This was extended
during FY2016 to LU factorization and im-
plemented in OpenMP and MPI.

e In FY2017, we extended the matrix for-
mat to more complex HSS and H-matrix
structures, and extended the implemen-
tation to GPUs for the matrix-vector
multiplication. =~ We utilized batched
MAGMA operations to process the
matrix-vector multiplication efficiently
on GPUs.

e In FY2018, we further extended the im-
plementation of the LU factorization to
multiple-GPUs using a hybrid MPI +
OpenMP + CUDA code.

e In FY2019 we extended the H-matrix
code to H2-matrix by using a nested ba-
sis. We also used a runtime for H-LU on
GPU, but found that such runtimes like
StarPU and OmpSs incur too much over-
head. For the inner kernels, we ported
the QR decomposition to run on Tensor-
Cores, and implemented the QR decom-
position using the BLR matrix.

e In FY2020 we implemented the uni-
form basis BLR, and QR factorization on
TensorCores with error correction. We
also developed a Eigenvalue computa-
tion based on BLR-QR, and developed
a GPU implementation of the lattice H-
matrix.

5 Details of FY2021 Research
Achievements

5.1 Improving the complexity of the H-matrix
LU decomposition from O(N log® N) to
O(N)

5.1.1 Research plan

Until F'Y2020 the cost of an H-matrix LU de-

composition was believed to be O(N log® N).

We have discovered a novel algorithm that

reduces the cost of H-matrix LU decompo-

sition to O(N). We are not aware of any
open source libraries that implement this

O(N) technique. Therefore, our focus dur-

ing FY2021 1Q is to implement the O(N)

‘H-matrix LU decomposition algorithm and

show empirical evidence that our method is

indeed O(N).

Final Report for JHPCN Joint Research of FY 2021

5.1.2 Progress
We were able to finish the development of
the O(N) algorithm. The results are shown
in Fig. 1, where the LU factorization time
in shown in the blue line, while the relative
error of the factorization is shown in the yel-
low line. The factorization time is shown in
milliseconds. As can be seen from the figure,
our new method shows ideal O(N) complex-
ity. We can compute the LU factorization
of a 500k by 500k dense matrix in 12.8 sec-
onds on a single CPU. Furthermore, the er-
ror shown in the yellow line is close to the
double precision rounding error. In these ex-
periments, we are using a large enough rank
to achieve such accuracy. These results were
achieved during the first half of F'Y2021.

In the second half of FY2021, we have ex-
tended this O(/NV) dense direct solver to dis-
tributed memory. For HSS matrices, it is
possible to remove the dependency on the
trailing matrices during Cholesky /LU factor-
ization, which results in a highly parallel al-
gorithm. However, the weak admissibility of
HSS causes the rank of off-diagonal blocks
to grow for 3-D problems, and the method
is no longer O(N). On the other hand, the
strong admissibility of H2-matrices allows it
to handle 3-D problems in O(N), but intro-
duces a dependency on the trailing matrices.
In the present work, we pre-compute the fill-
ins and integrate them into the shared basis,
which allows us to remove the dependency on
trailing-matrices even for H2-matrices. Com-
parisons with a block low-rank factorization
code LORAPO showed a maximum speed up
of 140x for a 3-D problem with complex ge-
ometry, as shown in Fig. 2.

5.2 Comparison of runtimes such as Par-
SEC, QUARK, and StarPU for the asyn-
chronous execution of H-matrix LU

5.2.1 Research plan

The H-matrix LU/QR decomposition is an

extremely challenging algorithm to paral-

lelize. It is more challenging that dense ma-
trix decomposition since the existence of low-
rank blocks makes the workload highly un-
balanced. It is more difficult than sparse
matrix factorization, since the hierarchical

—A&— OUR CODE N=119264
—A- OUR CODE N=954112

—— LORAPO N=119264
103 { —A- LORAPO N=954112 ——
--- IDEAL SCALE

10° . >, .
64 512 4096
Number Cores
Fig. 2 Strong scaling experiments on mul-
tiple nodes for different problem sizes of

the hemoglobin boundary element prob-
lem using our code and LORAPO.

structure of the matrix creates non-trivial
dependencies across multiple levels. Run-
times such as ParSEC, QUARK, and StarPU
are now commonly used in linear algebra
libraries. These runtimes use a directed
acyclic graph to identify which tasks can be
handled in parallel in an asynchronous man-
ner. However, the interface, capabilities, and
overhead of these runtimes vary, and it is
not obvious which runtime is suitable for H-
matrix LU/QR decomposition. Therefore,
we aim to create a unified interface to these
runtimes so that we may switch between
them easily. Then, we can compare the per-
formance of these runtimes on various matrix
structures and hardware architectures.

5.2.2 Progress

During the first half of FY2021, we were
preparing the implementation of our code
in ParSEC, QUARK, and StarPU. However,
these runtime systems have non-negligible
overhead, and extracting good performance
from these tool is not a straightforward task.
In the second half of FY2021, we have de-
cided to use a unified framework which al-
lows us to compare different runtime sys-
tems called AL4SAN. This is a lightweight li-
brary for abstracting the APIs of task-based
runtime engines, developed by our collabo-
rators at KAUST. This has significantly im-

Final Report for JHPCN Joint Research of FY 2021

prove the productivity of our code develop-
ment, but we are still investigating the opti-
mal configurations for each of these runtime
systems, to work with our H-matrix library.
Moreover, the distributed #2-ULV method
described in the previous sub-section, re-
moves the dependencies for the trailing sub-
matrices, so there is no need to use runtime
systems. Therefore, there is no need to com-
pare the performance of these runtime sys-
tems anymore.
5.3 Benchmarking of our 7H-matrix code
against other open source libraries
5.3.1 Research plan
There are over 20 different implementations
of structured low-rank approximation meth-
ods. The matrix structure used in these im-
plementations slightly differs between BLR,
HODLR, HSS, H-matrix, and H2-matrix.
Throughout our JHPCN project we have
continuously developed a code that can use
any of these structures. This is made possi-
ble through the use of a generic “Hierarchi-
cal” class in C++, which can handle any type
of hierarchical low-rank structure. However,
there have been no direct comparisons be-
tween these different implementations, which
makes it difficult for the user to select the
optimal library for their task of interest. To
address this problem, we will perform a thor-
ough benchmark between the representative
implementations, and show which method is
faster, scalable, accurate, robust, etc.
5.3.2 Progress
During the first half of F'Y2021, we had iden-
tified GOFMM, STRUMPACK, and MatRox
to be the most competitive implementations.
However, we have found that all of these
codes have serious issues. First of all MatRox
only has the capability to perform H-matrix-
vector multiplication and cannot perform the
‘H-matrix LU factorization that we are in-
terested in. STRUMPACK does not have a
distributed matrix construction scheme so it
cannot handle the matrix size we are using
in our experiments. GOFMM does not seem
to compile in the environment we are us-
ing. Therefore, we decided to compare with
an alternative state-of-the-art implementa-

tion LORAPO, which can handle H-matrix
LU factorization on distributed memory and
compiles in our environment. The results of
this comparison are shown in Fig. 2.
5.4 Development of an H-matrix LDL decom-
position
5.4.1 Research plan
During F'Y2020 we have developed a QR de-
composition using the BLR structure, which
is a non-hierarchical low-rank matrix struc-
ture that has O(N?) cost for the QR decom-
position. In FY2021 4Q, the original plan
was to extend this to the QR decomposition
of H-matrices to further improve the com-
plexity [1]. The long term goal of this project
is to compute the eigenvalues of a dense ma-
trix, and the plan was to use the QR method.
However, after careful consideration of alter-
native methods to compute eigenvalues, we
have decided to switch to the LDL decompo-
sition, which can be used to compute eigen-
values by slicing the spectrum. The applica-
tion we have in mind is the eigenvalue compu-
tation in electronic structure computations.
5.4.2 Progress
We have identified similarities between the
LU decomposition and LDL decomposition
that can be exploited for making the tran-
sition between the two methods easier. We
have extended the O(N) LU decomposition
implementation to the LDL decomposition
with only minor modifications to the code.
We used the LDL decompostion during the
slicing of the spectrum using a binary search
to obtain the nth eigenvalue of a dense ma-
trix in O(N log N) time. The computational
time for different matrix sizes is shown in Fig.

3.

6 Progress during FY2021 and Future
Prospects

The four main goals for the fiscal year 2021
are:

(1) Improving the complexity of the
H-matrix LU decomposition from
O(Nlog® N) to O(N)

(2) Comparison of runtimes such as Par-

Final Report for JHPCN Joint Research of FY 2021

104
--- 0(n) e

—— H2 -7

Time (ms)
=
%

2'9 2‘]0 2‘1[2"12 2‘13 2{4 2"15
Matrix size (n)
Fig. 3 Normalized time to compute the
8th smallest eigenvalue for various matrix

sizes using the H#2-LDL factorization to re-
cursively split the spectrum.

SEC, QUARK, and StarPU for the asyn-
chronous execution of H-matrix LU

(3) Benchmarking of our #H-matrix code
against other open source libraries

(4) Development of an H-matrix LDL de-
composition.

For (1), we were able to show perfect
O(N) scaling with our H2-ULV method,
while achieving double precision accuracy for
the LU factorization of a dense matrix, as
shown in Fig. 1. We have also extending
this work to develop an O(NN) LU factoriza-
tion for dense matrices without a dependency
on trailing sub-matrices, which we have sub-
mitted to SC22 and received positive reviews
at this point.

For (2), we used a unified framework which
allows us to compare different runtime sys-
tems such as StarPU, QUARK, and PaR-
SEC, which is provided by our collaborators
at KAUST. However, the distributed #?2-
ULV method described in (1), removes the
dependencies for the trailing sub-matrices,
so there is no need to use runtime systems.
Therefore, there is no need to compare the
performance of these runtime systems any-
more.

For (3), we have benchmarked against
other state-of-the-art libraries such as LO-
RAPO. Our latest code shows a 140 fold
speed up over LORAPO as shown in the pre-

vious section. Therefore, we consider this
task to be completed with more progress than
originally planned.

For (4), we have successfully developed a
H-matrix LDL decomposition, and used it
while slicing the spectrum using a binary
search to obtain the nth eigenvalue of a dense
matrix in O(Nlog N) time. This algorithm
has application in our Kiban B project, were
we apply it to an electronic structure compu-
tation.

7 List of Publications and
Presentations

Journal Papers (Refereed)

e M. R. Aripansyah, R. Yokota, '"QR De-
composition of Block Low-Rank Matri-
ces’, ACM Transactions on Mathemati-
cal Software, accepted.

Oral/Poster Presentations

e R. Yokota., FEEIK 7 >~ 7 EREICBS$
5L a—, 540 RIEHREHTY 7 5 —
5,9 H, 2021.

e R. Yokota., Overview of structured low-
rank approximation methods, TUTAM
Symposium on Computational Meth-
ods for Large-Scale and Complex Wave
Problems, Jun., 2021.

