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Development of physics informed machine learning for soft

matter: polymer flows and beyond
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Abstract

Soft Matter systems, among which we find colloidal dispersions, foams, cellular tissues,
and polymeric materials, are ubiquitous in life sciences and industry, and have become indis-
pensable for modern technologies. Unfortunately, due to the coupled hierarchy of length and
time scales involved, predicting their macroscopic material properties remains an incredibly
challenging task, even if we have complete understanding of the underlying microscopic com-
ponents. Recently, computer simulations, and multi-scale simulations (MSS) in particular,
have been successfully used to simulate these systems (e.g., MSS of polymer melt-spinning
processes), however the computational cost remains prohibitive. Therefore, the goal of this
project is to develop physics-informed machine learning (ML) methods that allow us to accel-
erate/replace currently used numerical methods, without any considerable loss of accuracy
or predictive capabilities. We have mainly focused on developing a method to learn the con-
stitutive relation of polymer melt flows from microscopic training data. These constitutive
relations can then be used within macroscopic flow simulations, for one to two orders of mag-
nitude speedup. We have also investigated other soft-matter problems that can benefit from
similar ML accelerators, such as flows at low Reynolds number, the dynamics of growing
cellular tissues, or the control of smart agents in complex environments.

1 Basic Information

1.1 Collaborating JHPCN Centers
Tokyo, Nagoya

1.2 Research Areas
- Very large-scale numerical computation
- Very large-scale data processing

1.3 Roles of Project Members
• John Molina (Kyoto University): Devel-
opment of Machine Learning methods to
simulate soft matter systems.

• Hayato Shiba (The University of Tokyo):
Guidance and support for accelerating
cpu/gpu code.

• Ryoichi Yamamoto (Kyoto University):
Guidance and support for soft matter

modeling.

• Takashi Taniguchi (Kyoto University):
Development of multi-scale simulation
methods for polymer flows.

• Takashi Shimokawabe (The University of
Tokyo):Guidance and support for accel-
erating gpu code.

• Takeshi Sato (Kyoto University): Devel-
opment of multi-scale simulation meth-
ods for polymer flows.

• Souta Miyamoto (Kyoto University):
Development of machine-learning and
multi-scale simulation methods for poly-
mer flows.

• Yan Xu (Kyoto University): Develop-
ment of multi-scale simulation methods
for polymer flows.
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• Takumi Ueda (Kyoto University): De-
velopment of multi-scale simulation
methods for polymer flows.

• Simon Schnyder (Kyoto University): De-
velopment of simulation methods for cel-
lular tissues.

• Jintao Li (Kyoto University): Develop-
ment of simulation methods for cellular
tissues.

• Krongtum Sankaewtong (Kyoto Univer-
sity): Development of machine-learning
methods to control active systems.

2 Purpose and significance of

Research

Soft Matter systems, which include colloidal
dispersions, polymeric materials, and cellular
tissues, are characterized by a coupled hier-
archy of length- and time-scales, which pro-
vides them with a variety of interesting ma-
terial properties. Unfortunately, this makes
them incredibly challenging to study. Thus,
the goal of this work has been to develop
physics-informed ML methods to efficiently
and accurately simulate the dynamics of soft
materials. Due to their significance for mate-
rial science, the main focus of this project has
been to accelerate polymer flow predictions.

Polymeric materials are typically produced
using polymer melt processing, during which
the molten polymer is allowed to flow, in or-
der to mold it to the desired shape. Un-
fortunately, we do not yet fully understand
how to explain the coupling between the mi-
croscopic polymer chain dynamics and the
macroscopic flow, which makes it incredibly
difficult to simulate such processes. The tra-
ditional approaches used to tackle such prob-
lems are: (1) MSS to directly couple the mi-
cro/macro degrees of freedom or (2) a fully
macroscopic description using a given consti-
tutive relation. The former is incredibly ex-
pensive, while the latter usually lacks a clear
theoretical foundation. Thus, we have pro-
posed to develop a ML method to directly
learn the constitutive relation for the stress
of entangled polymeric materials with mem-

ory. This allows us to drastically reduce the
calculation time compared with state-of-the-
art MSS, with no loss of accuracy.

Additionally, we have investigated how to
develop ML solvers for Stokes flow equations,
which describe the dynamics of fluids at low
Reynolds numbers (e.g., swimming micro-
organisms or high-viscosity polymer flows),
as well as how to learn optimal control strate-
gies for agents in complex environments (e.g.,
swimming particles under external flows, ra-
tional individuals in a pandemic), and de-
velop MSS for cellular tissues.

3 Significance as JHPCN Joint

Research Project

In this project, we are developing ML meth-
ods to (1) accelerate large-scale simulations
of soft-matter materials, particularly focus-
ing on polymeric flows, and (2) learn opti-
mal control strategies for agents in complex
environments. Both the generation of the
training data, and the learning itself, can re-
quire a considerable amount of computing
resources. For example, to learn the con-
stitutive relations of polymeric systems, we
require microscopic simulations with Np ≃
104 − 105 entangled polymer chains, with
O(102) different external flow conditions, in
order to generate a suitable training data set.
When learning optimal control strategies for
swimming systems, the training typically re-
quires O(103) epochs, with each epoch re-
quiring a direct numerical simulation to re-
solve the many-body hydrodynamic interac-
tions. In all cases, we have used custom sim-
ulation codes to generate the required train-
ing data. Unfortunately, our codes were orig-
inally written with CPU clusters in mind,
so a considerable amount of effort has gone
towards porting and optimizing to GPUs.
For the learning, we have mainly used Py-
Torch and GPyTorch, as well as custom
JAX/JAXOPT code, with the later provid-
ing excellent performance on the GPUs, al-
lowing us to take full advantage of the GPU
clusters (Wisteria-BDEC and FURO Type-
II).
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4 Outline of Research Achievements

up to FY2020

Not Applicable.

5 Details of FY2021 Research

Achievements

5.1 Learning for Polymer Processing Flows
5.1.1 Extension of MSS

Fig. 1 Prediction of transient viscosities
for a Polystyrene blend under uniaxial
elongations. (symbols) Experimental data
from Hengeller et al. (Rheologica Acta
55, 3030, 2016), (dotted line) simulations
without SORF, (solid line) simulations

with SORF, with τ
(long)
R the Rouse relax-

ation time. (S. Miyamoto, Master thesis,
Kyoto Univ. 2022)

First, we will discuss our achievement in
further developing the MSS model for poly-
mer flows. We have performed a rheo-
logical study to extend and validate the
Doi-Takimoto (DT) entanglement model for
bi-disperse polymer melts. In particular,
we confirmed that the extended DT model
with stretch/orientation induced reduction
of friction (SORF) can correctly reproduce
the strain hardening under fast elongational
flows that has been observed experimentally
(Fig. 1).

Fig. 2 Logarithm of calculation time for a
non-interacting Hookean dumbbell model
as a function of simulation time step, using
Np = 105, 106, 107. (filled symbols) sin-
gle GPU runs, (open symbols) single CPU
runs.

To accelerate the MSS, which is required
to validate the results of our learned con-
stitutive relations, one of the main goals of
this project was to port our code to GPU.
However, due to the complexity of the poly-
mer entanglement inherent to the DT model,
and our relative inexperience with GPU cod-
ing, we have started by porting the non-
interacting polymer MSS models for both
Hookean dumbbells (OpenACC and CUDA)
and Rouse chains (CUDA). Given their non-
interacting nature, the models were almost
trivially parallelizable, requiring no special-
ized libraries or algorithms. Our imple-
mentation was tested by simulating planar
Poiseuille flow in 1D. The single GPU cal-
culation was O(103) times faster than a sin-
gle CPU, and O(10) times faster than a 25
core CPU/MPI calculation (Fig.2). This dra-
matic speedup provided by the GPU allows
us to use Np ≫ 1, which significantly reduces
statistical errors in the calculation (whereas
the CPU runs are limited to Np ≲ 103).
5.1.2 Learning the Constitutive Relation
To simulate large-scale polymer processing
flows we have extended our learning method
to learn the constitutive relation of entan-
gled polymer melts. In particular, we have
shown that it is possible to learn the constitu-
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Fig. 3 Scaled training data for the con-
stitutive relation generated from micro-
scopic simulations of a mono-disperse Doi-
Takimoto model under start-up shear
flows. (lines) raw data and (symbols)
smoothed data for the xy components of
the shear stress σ and its time-derivative
σ̇.(S. Miyamoto, Master Thesis, Kyoto
Univ. 2022)

tive equation for the stress of the DT model
from a reduced set of microscopic training
data. For this, we performed DT simula-
tions using Np = 105 polymer chains under
20 start-up shear flows. The training data
is shown in Fig. 3, which displays the re-
lation between the shear-stress and its time
derivative. Crucially, it is seen that the re-
lationship is two-valued for fast shear flows,
which means that σ̇xy cannot be a function
only of σxy and κxy (with κxy the xy com-
ponent of the velocity gradient tensor), i.e.,
additional descriptors are required to estab-
lish a constitutive relation. For this, we have
introduced the number of entanglements Z.
Although other descriptors are possible, Z
scored the highest Pearson correlation coef-
ficient with σ̇ in our analysis. We then use
a Gaussian Process (GP) regression scheme,
in order to learn the constitutive relations
σ̇xy(σxy, Z, κxy) and Ż(σxy, Z, κxy). For this,
we have used the GPyTorch library. Unfortu-
nately, this library does not fully support the
A100 GPUs provided on Wisteria, so we were
forced to run the learning using CPUs only.

Finally, we have also performed detailed mi-
croscopic (cell-level) simulations to study the
effect of cell competition in proliferating tis-
sues. This has provided us with ample train-
ing data to learn constitutive equations for
cellular tissues. However, the variable den-
sity makes this a much more difficult learning
task, one which we have yet to solve.
5.1.3 Flow Predictions using Learned Consti-

tutive Relation
With the learned constitutive relations, we
can perform polymer flow simulations that
are O(102) times faster than full MSS, which
we refer to as GP accelerated MSS (GPMSS).
As a reference, MSS with Np = 105 re-
quire ∼ 0.5 s/step (8 CPU cores), whereas
GPMSS require ∼ 2 ms/step. Simulation re-
sults are shown in Fig.4, where good over-
all agreement is observed between MSS and
GPMSS. The stress and entanglement pro-
files are in good quantitative agreement, al-
though the velocity profiles exhibit some no-
ticeable differences, particularly in the tran-
sient regime. These differences appear in de-
creasing stress regions of the constitutive re-
lation space (σ̇xy < 0, σxy > 0), in which
we have little to no training data, showing
the limitations of Gaussian Process extrap-
olation. To address this issue we must im-
prove the protocol we are using to generate
the training data.
5.2 Learning for Stokesian Flows
When considering flows through complex
domains or with moving boundaries, tra-
ditional flow solvers, both Eulerian (e.g.,
finite-element, spectral methods) and La-
grangian (e.g., smooth particle hydrodynam-
ics), can become incredibly expensive due
to the resolution requirements. In addition,
for high-viscosity fluids we would like to di-
rectly solve the Stokes equation, instead of
the full Navier-Stokes equation, which turns
into a boundary value problem that can be
cumbersome to solve, particularly for non-
Newtonian fluids. In this work, leveraging
the linearity of the Stokes equation, we have
investigated the use of Gaussian Processes to
formulate flow problems as inference prob-
lems. This allows us to consider missing
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Fig. 4 Scaled simulation results for pla-
nar Poiseuille flows using full MSS (dot-
ted black line) and GPMSS (solid colored
line). (top) velocities vx, (middle) stress
σxy, and (bottom) number of entangle-
ments Z as a function of time for different
points along y the height of the channel
(width H(M)). (S. Miyamoto, Master the-
sis, Kyoto Univ. 2022)

and/or noisy data, arbitrary flow geometries

Fig. 5 2D Pressure driven flow past a
cylinder. (top) reference solution obtained
using the FEniCS python package with
O(105) elements , (bottom) GPStokes in-
ference with O(103) total (test + train-
ing) points. Crosses represent the train-
ing values v = 0 used for the velocities at
the boundaries of the wall and cylinder.
(K. Ogawa, Undergraduate Thesis, Kyoto
Univ.)

with arbitrary computational grids, and it
does not require the discretization of the dif-
ferential operators (which plagues traditional
methods).

For this, we consider the velocity u, pres-
sure p, total force g, and velocity divergence
fields h = ∇ · u to be given by a joint
GP. We then compute the conditional GP
P (u, p |ub, pb, g, h ), using as known training
data the velocity and pressure at the bound-
aries, ub and pb, as well as the force balance
g = 0 (Stokes equation) and the divergence
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free condition h = 0. This allows us to en-
code the physics of the problem in terms of
the correlations between the different ran-
dom fields. For this, we rely heavily on
JAX’s automatic differentiation capabilities.
Finally, the average for the velocity and pres-
sure fields, which provide us with the best
solution, can be computed using exact GP
regression (within machine precision). Re-
sults for the case of pressure driven flow past
a cylinder are shown in Fig. 5. In this case,
the boundary points have been chosen ran-
domly, whereas the training points for the
force-balance and divergence-free conditions
have been placed on a regular lattice (with
a small random displacement to avoid sin-
gularities in the correlation matrices). This
ability to use arbitrary grids allows us to eas-
ily vary the resolution in regions that require
it, as well as allowing for exact treatment of
sharp interfaces. We obtain excellent agree-
ment with the reference solution (maximum
absolute error is ≃ 10−3, 10−4, 10−1 for vx,
vy, and p, respectively), but require a signifi-
cantly smaller number of elements. Although
the training is relatively expensive, we expect
this method to become attractive in situa-
tions where traditional methods fail or be-
come too expensive, e.g., analyzing experi-
mental data with missing information, solv-
ing particle dynamics in non-Newtonian host
fluids at zero Reynolds number, or finding
flow solutions for complex geometries with
mixed boundary conditions.
5.3 Learning for Optimal Control
To understand how micro-organisms sense
mechanical signals from their environment,
we have considered how to learn optimal
control strategies for swimmers navigating
through non-uniform flow fields. For this, we
use deep-Q learning, with prioritized experi-
ence delay and n-step learning, together with
direct numerical simulations (DNS), in order
to fully solve for the hydrodynamic flows.
A feed-forward Neural Network (NN), with
three hidden layers (100 neurons each), is
used to learn the mapping between the swim-
mer’s local information (e.g., local stress) and
the preferred action (e.g., external torque).

The learning is performed using the Py-
Torch library (using the ADAM optimizer),
whereas the DNS is performed using the
KAPSEL colloidal simulator (simulation grid
of 32 × 32 × 64 points). This required us to
interface the KAPSEL C++ code with the
python PyTorch libraries: every 10 simula-
tion steps the current swimmer state (e.g.,
velocity, orientation, surface stresses) is fed
into the NN to obtain the action to be used
over the next 10 steps. Training was car-
ried out over ∼ 103 episodes, with a single
episode consisting of ∼ 103 DNS time-steps.
Depending on the number of particles con-
sidered (N = 1 ∼ 32), training could take
between 24−72 hours. Here, we faced signifi-
cant difficulties arranging the memory trans-
fer between C++/Python, which likely ex-
plains the excessive training times. We have
successfully obtained optimal control strate-
gies for a single force-free swimmer tasked
with moving in a zig-zag shear flow, either
parallel to the velocity gradient or perpen-
dicular to the shear-plane, using only local
information.

We have also considered an inverse opti-
mal control problem, in which observations of
the optimal behaviour of an agent are used
to infer the underlying cost or utility func-
tion that gave rise to this motion. For this,
we have considered a game theoretic formu-
lation of social distancing in response to an
epidemic. As the state of the epidemic pro-
gresses, rational individuals will adapt their
strategy in such a way that maximizes their
individual utility. Assuming that all indi-
viduals are the same, we arrive at a Nash
equilibrium strategy as the “optimal” strat-
egy, even though it is not the strategy that
maximizes the sum total of the population’s
utility (the utilitarian maximum). The di-
rect solution to such a problem will strongly
depend on the choice of the individual’s util-
ity, which is impossible to measure. There-
fore, we have developed a novel physics in-
formed NN, which we refer to as a Nash Neu-
ral Network (N3), that allows us to learn
the utility in an unsupervised manner from
the observed optimal behaviour (Molina et
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al., arXiv:2203.13432). For this, we have en-
coded the underlying Euler-Lagrange (EL)
equations, as well as the game-theoretic Nash
equilibrium, into the structure of the Net-
works. Crucially, and in contrast to previous
works, the N3 self-consistently evaluates it-
self on the optimal control. To achieve this,
we have used JAX’s automatic differentiation
capabilities and functional nature, which al-
low us to systematically derive the EL equa-
tions from black-box utilities (encoded with
a simple NN), as well as JAXOPT’s differen-
tiable optimizers, which are needed to take
gradients through the optimality condition at
which the N3 is evaluated. We have tested
our system on synthetic data, assuming SIR
dynamics with a known utility, which we
were able to successfully recover. We used
a feed-forward NN with three hidden layers
(128 neurons each), trained with the ADAM
optimizer over ∼ 105 steps. We note that
the complexity of the learning, caused by the
highly non-linear loss function, absolutely re-
quired the use of the A100 GPUs onWisteria:
even for a relatively small number of train-
ing points(≲ 103), training would take more
than 24 hours on a single GPU.

6 Progress during FY2021 and Future

Prospects

Our original plan was divided in four themes :
(A) full MSS validation, (B) constitutive
equation learning, (C) simulation of Poly-
mer Processing flows, and (D) extensions to
other Soft Matter systems. With regards
to (A), we had intended to fully parallelize
our MSS code, both the microscopic poly-
mer simulator and macroscopic flow solver,
and port it over to the GPU. While we have
successfully ported the dumbbell and Rouse
simulators to the GPU, we have not yet suc-
ceeded in porting the DT simulator, owing
to the complexities of handling the entan-
glements. With regards to (B) and (C), we
have successfully learned the DT constitu-
tive relation, and used it to perform macro-
scopic flow simulations (resulting in O(102)
speed increases). While the agreement is

good overall, there are noticeable differences
in the transient velocity predictions, partic-
ularly for highly elastic systems. We have
traced this problem to the lack of training
data in select regions of the constitutive re-
lation space. For (D), we have considered
several applications, covering a wide variety
of areas in Soft Matter. In particular, using
the same ML techniques used to learn the
constitutive relations (i.e., Gaussian Process
regression), we have developed a probabilis-
tic flow solver for the Stokes equations. We
have also developed ML methods that can be
applied to direct and inverse optimal control
problems, e.g., for learning efficient swim-
ming strategies or inferring utilities from op-
timal behaviour.

Our research plan for next year will con-
tinue with the themes we have developed,
focusing on three items: (1) Learning the
constitutive relations of entangled polymer
melts, (2) Learning the Stokes equation,
and (3) Learning optimal control strategies.
From a technical point of view, we aim to
move most of our codebase to JAX, replac-
ing PyTorch and GPyTorch, due to it’s re-
duced development time, ability to target
CPU/GPU/TPU, and high-performance. In
our experience, well-written JAX code can
run as fast as optimized C/C++ code. For
(1), we need to improve our training pro-
tocol, in order to selectively target the re-
gions of constitutive equation space that we
have missed. In addition, we must also finish
porting our DT model to the GPU, in or-
der to fully parallelize both the MSS and the
GPMSS. For the MSS, this will require us
finding a suitable data-structure/algorithm
to handle the insertion/deletion of entangle-
ment points. For the GPMSS we would like
to replace GPyTorch with our own custom
JAX code. This will require that we imple-
menting GPyTorch’s Black-Box Matrix Ma-
trix method. This port will also be used for
item (2), in order to allow us to perform ex-
act inference with up to millions of training
points (which will likely be required for 3D
flows). Regarding item (3), we will continue
with the two problems we have discussed
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above, optimal control of swimmers, and in-
verse optimal control for rational individuals.
For the swimmers, we will need to optimize
the data transfer between C++/Python, im-
plement the Deep Q-Learning in JAX, incor-
porate torque-free control and improve the
learning for many-particle systems. Finally,
for the rational agents, we will work on per-
forming the inference using only observed be-
haviour, without using the full state of the
system (which includes Lagrange multipliers
that are impossible to measure in real-life).

7 List of Publications and

Presentations

Journal Papers (Refereed)
Presentations

• J. Li, S.K. Schnyder, M.S. Turner(+), R.
Yamamoto, ‘Cell migration and colony
growth in a monolayer of model cells’,
11th Liquid Matter Conference, online,
18-23 July, 2021

• T. Taniguchi, ‘Multi-scale simulations
of Polymer Melt Flows’, 49th AIST
Seminar: “Technological Prospects and
Applications of Multi-scale and Cou-
pled Analysis”, online, 31 August and 2
September, 2021.

• S. Miyamoto, J.J. Molina, T. Taniguchi,
‘Flow simulation of polymeric liquids us-
ing learned constitutive relations’, The
Society of Chemical Engineers, Japan
52nd Fall Meeting, online, 22-25 Septem-
ber, 2021. –Best Presentation Award–

• T. Taniguchi, Y. Hamada, T. Sato,‘Hy-
brid simulations of polymer melt spin-
ning using molecular dynamics and a
conventional macroscopic model’, PPS-
36: The 36th International Conference of
the Polymer Processing Society, online,
27-29 September, 2021.

• S.Miyamoto, J.J. Molina, T. Taniguchi,
‘Well-entangled polymer melt flow simu-
lations using a Machine-Learned consti-
tutive relation’, 69th Rheology Sympo-
sium, online, 20-21 October, 2021.

• J.J. Molina and T. Taniguchi, ‘A
Machine-Learning Approach to Flow

Problems’, 69th Rheology Symposium,
online, 20-21 October, 2021.

• T. Taniguchi, ‘Multi-Scale Simulation
for well-entangled polymer melt flows’,
19th International Symposium on Ap-
plied Rheology, online, 11-12 November,
2021. –Invited Plenary–

• J.J. Molina and T. Taniguchi,‘Gaussian
Processes for Machine Learning of Fluid
Flows’,Softbio Workshop 2021, Akita,
Japan, 16-18 November, 2021. –Invited–

• S. Miyamoto, J.J. Molina, T. Taniguchi,
‘Flow simulation of a polymer melt using
a machine-learned constitutive relation’,
29th Autumn Meeting of the Japan So-
ciety of Polymer Processing, online, 30
November- 1 December, 2021.

• J.J. Molina, S. Miyamoto, T. Taniguchi,
‘Learning the constitutive relation of
polymer melt flows’, Pacifichem 2021,
online, 16-21 December, 2021.

• J. Li, S.K. Schnyder, M.S. Turner(+), R.
Yamamoto, ‘Competition between two
cell types under cell cycle regulation with
apoptosis’, American Physical Society
March Meeting 2022, 14-18 March, 2022.

• S. Miyamoto, J.J. Molina, T. Taniguchi,
‘Application of machine-learned consti-
tutive relations for well-entangled poly-
mer flows’, American Physical Society
March Meeting 2022, 14-18 March, 2022.

• J.J. Molina, S.K. Schnyder, M.S.
Turner(+), R. Yamamoto, ‘Nash Neu-
ral Networks’, American Physical Soci-
ety March Meeting 2022, 14-18 March,
2022.

Proceedings of International Conferences (Ref-
ereed)
Proceedings of International Conferences (Non-
refereed)
Published library and relating data
Other (patents, press releases, books and so
on)

• H. Shiba and T. Shimokawabe, ‘Graph
Neural Network Prediction of Long-
Time Molecular Dynamics and its
Benchmarks’, IPSJ SIG Technical Re-
port, 2022.


