
Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
Final Report for JHPCN Joint Research of FY 2020

1

jh200051-NAHI
Scalable Multigrid Poisson solver for AMR-based CFD applications

in Nuclear Engineering

Naoyuki Onodera（Japan Atomic Energy Agency）

We develop a multigrid preconditioned conjugate gradient (MG-CG) solver for the
pressure Poisson equation in a two-phase flow CFD code JUPITER. The MG-CG
solver is redesigned to realize efficient CFD simulations including complex
boundaries and objects using an adaptive mesh refinement (AMR) method based on
a block-structured Cartesian grid system. Here, we propose a new MG preconditioner
with the cache reuse successive over relaxation (CR-SOR) smoother, which has high
arithmetic intensity using the shared memory and enables continuous memory access
on the block-structured grid. We measured the kernel performance of the MG-CG
solver on GPU and CPU on the TSUBAME supercomputer, and A64FX on the FLOW
supercomputer. The performances on the GPU and CPU are reasonable, but there are
significant performance degradation on A64FX. The numerical experiments are
conducted for two-phase flows in a fuel bundle of a nuclear reactor. Thanks to the
block-structured data format, grids inside fuel pins are removed without performance
degradation, and the total number of grids is reduced to 2.26×109, which is about 70%
of the original uniform Cartesian grid system. The MG-CG solver with the CR-SOR
smoother reduces the number of iterations to less than 9% of the original
preconditioned CG method, leading to 5.9-times speedup on the TSUBAME
supercomputer. In the strong scaling test, the MG-CG solver with the CR-SOR
smoother is accelerated by 2.1 times between 64 and 256 GPUs.

1. Basic Information

(1) Collaborating JHPCN Centers

・ The University of Tokyo

・ Tokyo Institute of Technology

・ Nagoya University

(2) Research Areas

n Very large-scale numerical computation

(3) Roles of Project Members

・ Naoyuki Onodera (JAEA, Representative,

Development of a Poisson solver)

・ Audit Edouard (CEA France, Deputy-
Representative, Advice and support)

・ Takayuki Aoki (Tokyo Tech, Deputy-
Representative, Advice and support)

・ Yasuhiro Idomura (JAEA, Advice and support for
large-scale computation on TSUBAME)

・ Yuta Hasegawa (JAEA, Development of a Poisson
solver)

・ Susumu Yamashita (JAEA, Development of a
nuclear engineering code)

・ Yuichi Asahi (JAEA, Porting codes on CPU/GPU
platforms)

・ Takashi Shimokawabe (Tokyo, Advice for large-
scale computations on Oakbridge-CX)

・ Satoshi Oshima (Nagoya, Advice for large-scale
computations on Flow)

2. Purpose and Significance of Research

(1) Research purpose

This project aims at developing exascale computing

technologies for multi-scale CFD simulations on

exascale platforms. For this purpose, we promote a

collaborative research with respect to the following

three main subjects, a) High performance sparse matrix

solvers on accelerated computing platforms, b)

Adaptive Mesh Refinement (AMR) methods for multi-

scale turbulence problems with complicated boundaries,

c) Performance portability of CFD codes based on

advanced frameworks and programming models.

The target CFD applications in this project are the

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
Final Report for JHPCN Joint Research of FY 2020

2

3D multi-phase multi-component thermal hydraulic

CFD code JUPITER [Yamashita et al., Nuclear

Engineering and Design 2017] and the 3D compressible

hydrodynamic astrophysics CFD code ARK [Padioleau

et al., Astrophysical Journal 2019]. JAEA has promoted

the development of high-performance pressure Poisson

solvers based on various Communication-Avoiding

(CA) algorithms on the Oakforest-PACS [Idomura,

ScalA18@SC18] and on the Summit [Ali,

ScalA19@SC19] (Fig.1), and their strong scaling was

demonstrated up to ~8,000 KNLs/V100s. In the

FY2019 project, the development of a new AMR

framework for JUPITER was conducted. On the other

hand, CEA has developed ARK based on an AMR-

based compressible fluid model, and its performance

portability between KNL and V100 was demonstrated

using a programing model with MPI+Kokkos. ARK

requires high performance matrix solvers for gravity

Poisson solvers and implicit matrix solvers.

In this project, we accelerate the development of

common exascale computing technologies for AMR-

CFD simulations by sharing the knowledges on high

performance matrix solvers, performance portability,

and AMR methods. The developed technologies will

contribute to various science and engineering CFD

applications.

(2) Significance of research

a) High performance sparse matrix solvers on

accelerated computing platforms

Sparse matrix solvers for the pressure Poisson equation,

the gravity Poisson equation, and implicit time

integration are critical bottlenecks for high performance

CFD simulations. In this project, we extend our CA

algorithms such as CA multi-grid (CA-MG) solvers and

CA-Krylov solvers to block (or patch) structured AMR

grid data, and apply them to various nuclear engineering

problems and astrophysics problems in JUPITER and

ARK, respectively. By analyzing required precision in

each problem, we explore optimum mixed precision

approaches, which were already implemented in

	
Fig.1: Strong scaling tests up to 7,680 GPUs on the
Summit. A large JUPITER matrix with N = 1,280 × 1,280
× 4,608 is computed using the Preconditioned CG method
and the Preconditioned Chebyshev Basis Communication-
Avoiding CG method.

JUPITER. If such an efficient implementation works for

AMR-CFD simulations, it has a great impact on various

engineering and science fields.

b) AMR methods for multi-scale CFD problems

AMR methods are promising solutions for multi-scale

turbulence problems. Their parallel implementations

have been designed to keep the balance of computing

loads, e.g., via space filling curves. However, on

accelerated computing platforms, the communication

cost often becomes comparable or exceeds the

computing cost. In such a situation, one needs to design

a new parallel implementation by taking account of both

computation and communication costs. In this work, we

develop a new performance model of AMR-CFD

simulation, which is of critical importance for various

exascale AMR applications.

c) Performance portability on multi-platforms

Performance portability between CPU and GPU has

been a long-standing issue. In addition, several new

CPU and GPU architectures are emerging towards

exascale supercomputers. This makes the performance

portability issue more serious. In this work, first, we

port miniapps from JUPITER and ARM via native

programing models such as CUDA and OpenMP and

via more portable programing models such as Kokkos,

and investigate performance bottlenecks in the latter

approach. From this performance study, we clarify the

most efficient porting strategy and apply it to JUPITER

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
Final Report for JHPCN Joint Research of FY 2020

3

and ARK.

3. Significance as JHPCN Joint Research Project

The goals in this project are to develop extreme scale

AMR-CFD simulations and to establish performance

portability on the latest CPU and GPU platforms. For

this purpose, we need to use several supercomputing

systems, which are based on state-of-the-art CPUs and

GPUs and have a large number of computing nodes.

Such computing needs can be satisfied only by a

JHPCN joint research project.

4. Outline of Research Achievements up to

FY2019

Not applicable.

5. Details of FY2020 Research Achievements

5.1 JUPITER Code

(1) Incompressible Two-Phase Flow Solver

We solve two phase flows using an incompressible fluid

model based on the Navier-Stokes equation. The

Navier-Stokes equation consists of advection, diffusion,

and external force terms with an explicit time

integration method. Since the divergence-free condition

on the velocity field is essential for mass conservation,

the pressure Poisson equation is solved iteratively. As a

pressure-velocity correction algorithm, the simplified

marker and cell (SMAC) method is applied to JUPITER.

After solving the pressure Poisson equation, the

velocity field is modified with the updated pressure

gradient. The time evolutions of the above Navier-

Stokes equation.

The dynamics of the gas and liquid phases are

described by a convection equation of the volume of

fluid (VOF) function. A physical property in a cell is

determined by the linearly weighted average of the

VOFs for the gas and liquid phases.

(2) Poisson Solver

The main computational cost comes from the pressure

Poisson equation discretized by the second order

accurate centered finite difference scheme with seven

stencils. Since the matrix is symmetric and diagonal-

dominant, the Poisson solver is normally computed

using the P-CG method.

In two-phase flow simulations, a large density ratio

between gas and liquid increases the contrast of each

matrix component. In addition, large-scale simulations

have multi-scale features such as thin gas-liquid

interfaces and complex object boundaries. These

features deteriorate the convergence property, and thus,

the improvement of preconditioning is of critical

importance.

(3) Geometric Multigrid Preconditioner

The MG method is one of the most efficient

preconditioners to reduce the computational cost and

improve the convergence property in multi-scale

problems. Since JUPITER is based on the block-

structured Cartesian grid system, we can use the

geometric multigrid (GMG) method with a three-stage

V-cycle shown in Fig. 2. In the GMG method, an

approximate equation is solved at each MG level. The

interpolation coefficients between MG levels are

calculated geometrically.

The choice of the smoother at each MG level is very

important in terms of the computational cost and the

convergence property. The red and black SOR (RB-

SOR) method is an efficient smoother, which has high

thread parallelism. However, it requires multiple

	

Fig.2: The geometric multigrid preconditioner based on a
three-stage V-cycle with fine, middle, and coarse MG
levels. The MG levels are defined within each leaf, in
which the number of grids is reduced as 83, 43, and 23. A
fixed iteration number is used for smoothers at each level.

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
Final Report for JHPCN Joint Research of FY 2020

4

memory accesses for the red and black phases

alternatively to eliminate the dependency between

adjacent grids. In this research, we propose a cache

reuse SOR (CR-SOR) method, which can effectively

reduce the residuals of local subdomain by multiple

sub-iterations.

(4) Block-Structured Cartesian Grid

The original JUPITER code was developed based on a

Cartesian grid system, whose resolution was chosen to

reproduce the shape of the VOF function or the gas-

liquid interface with enough accuracy. However, there

was a lot of memory wastage for nuclear engineering

problems which contain complex non-fluid objects. In

the block-structured AMR grid system, grid resolution

is adaptively changed in each subdomain depending on

the local scale of multi-scale solutions. Even without the

change of grid resolution, the block-structured grid is

beneficial, when the boundary is not aligned to the

Cartesian grid and/or complex structures exist inside the

computational domain. In this work, we use the block-

structured grid with uniform grid resolution and reduce

the grids outside the boundary and inside the object.

A data structure is very important from the

viewpoint of the computational efficiency on CPU/GPU

platforms. A block-structured grid has an efficient data

structure, in which the whole domain is decomposed

into block units named “Leaf”. Here, the leaves are

connected by the forest-of-octree data structure. Since

the leaf consists of a regular Cartesian grid system with

n3 grids, continuous memory access is enabled. In this

research, the size of leaf is set to n=8 by taking account

of the above tradeoff.

The block-structured grid can be easily extended to

the MG method. It is possible to use the same forest-of-

octree structure as long as there is a grid in the leaf. We

adopt the MG method with a three-stage V-cycle, in

which the number of grids at fine, middle, and coarse

MG levels are set to 83, 43, and 23, respectively.

5.2 Implementation and Optimization

(1) Implementation of JUPITER Code on Block-

Structured Cartesian Grid

JUPITER is written in C++ and CUDA. The connection

of the block-structured grid is managed by the forest-of-

octree data format, in which each array is based on the

Structure of Array (SoA) memory layout. The same

block-structure grid is used also in the MG method,

where the offset index changes to 1/8 and 1/64 of the

original resolution depending on the MG level.

It is important to assign CPU, GPU and A64FX

threads to grids in stencil computation. We implement a

kernel as shown in Fig. 3. Outer loop as

“FOR_EACH1D_BLOCKIDX” corresponds to the

leaves, and inner loop as “FOR_EACH3D” is assigned

to 83 grids in the leaf. Although the block-structured

Cartesian grid system keeps continuous memory access

as in the standard Cartesian grid system, special care has

to be taken in the treatment of the leaves. Stencil

computation for the block-structured grid requires the

offset indices of the neighbor leaves, which are

normally assigned to the register memory. One leaf

refers to the offset indices of 26 surrounding leaves, and

these indices can be shared by threads belonging to the

same leaf.

1:			
2:			
3:			 	
4:			 	
5:			 	
6:			 	
7:			 	
8:			 	
9:			
10:			 	
11:			 	
12:			 	
13:			 	
14:			 	
15:			 	
16:			
17:			 	 	
18:			
19:			
20:			
21:			 	 	
22:			
23:			
24:			 	 	
25:			
26:			
27:			
28:			
29:			
30:			

#ifdef __CUDA_ARCH__
 #define FOR_EACH1D_BLOCKIDX(L, NL) \
 const auto L = blockIdx.x

 #define FOR_EACH3D(I,J,K, NX,NY,NZ) \
 const auto I = threadIdx.x \
 const auto J = threadIdx.y \
 const auto K = threadIdx.z
#else
 #define FOR_EACH1D_BLOCKIDX(L, NL) \
 _Pragma(“omp parallel for”) \
 for(int L=0; L<NL; L++)

 #define FOR_EACH3D(I,J,K, NX,NY,NZ) \
 PRAGMA_FOR_SIMD \
 for(int K=0; K<NZ; K++) \
 PRAGMA_FOR_SIMD \
 for(int J=0; J<NY; J++) \
 PRAGMA_FOR_SIMD \
 for(int I=0; I<NX; I++)
#endif

void cfd_function(...)
{
 FOR_EACH1D_BLOCKIDX(l, num_amr_leaves){
 FOR_EACH3D(i,j,k,NX_LEAF,NX_LEAF,NX_LEAF){
 // operations at stencil (i,j,k, l)
 }
}

}

Fig.3: Pseudocode for stencil computation to call CPU and
GPU instructions.

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
Final Report for JHPCN Joint Research of FY 2020

5

(2) Cache Reuse SOR Method

The calculation speed of smoother is mainly limited by

memory read/write time rather than the cost of floating-

point operations. The RB-SOR method requires global

memory access twice for the red and black phases,

which causes performance degradation. To resolve this

issue, we propose a new CR-SOR method [Onodera et

al., HPC Asia 2021]. The computational domain is

divided hierarchically in order to resolve dependencies

between leaves and grids inside the leaf. One is coarse

domain decomposition for MPI parallelization (MPI

domain), and the other is fine block decomposition for

cache optimization (cache block). In the outer iteration,

each MPI domain is processed for n times with a two-

color ordering. In the inner iteration, the RB-SOR

method within each cache block is computed for m

times to accelerate the convergence.

5.3 Numerical Experiment

(1) CG Kernel Performances on TSUBAME and

FLOW

We evaluated the kernel performance of CG solvers in

JUPITER on multiple platforms. Table 1 shows

hardware metrics of GPU and CPU on TSUBAME, and

A64FX on FLOW. Table 2 shows the kernel

performance analysis against the modified roofline

model [Shimokawabe et al., SC’10, 2010].

AXPY and inner product kernels are memory

intensive kernels without neighbor stencil access. Since

the block-structured data format enables continuous

memory access in the leaf, these kernels achieved ideal

sustained performance with the performance ratio

against the roofline model tR/t > 0.5.

SpMV kernel is a very important kernel, because

SOR kernels also have similar memory access. The

performances on GPU and CPU are reasonable, but

there is a significant performance degradation on

A64FX. According to the optimization report, the

innermost loop was not SIMD-optimized due to inline

functions and a conditional branch in the loop. Since

Fujitsu C++ compiler cannot optimize any function call

Table 1: Hardware metrics of the TSUBAME and Flow
platforms.

 TSUBAME
NVIDIA
P100

TSUBAME
Broadwell
(2 sockets)

FLOW
A64FX
(1 CMG)

Performance
[GFlops]

4700 851.1 844.8

Bandwidth
[GByte/s]

732 153.6 256

Compiler:
compiler
options

nvcc -O3
-restrict
-use_fast_
math

icpc -O3
-qopenmp
-AVX2 -ipo
-restrict

mpiFCCpx
-O3 -Kfast,
parallel, openmp,
restp=all

Table 2: Kernel performance analysis: Floating point
operation f [Flop/grid], Memory access b [Byte/grid],
Elapse time t [ns/grid], Roofline time tRL = f /F + b/B

[ns/grid]. Here F is Peak performance [Flops], and B is
memory band-width [Byte/s]. (Note: The symbol * indicates

the performance after optimization.)

PCG kernels
TSUBAME
NVIDIA
P100

TSUBAME
Broadwell
(2 sockets)

FLOW
A64FX
(1 CMG)

 f / b t tRL/t t tRL/t t tRL/t

AXPY
3 /
24

0.045 0.75 0.26 0.62 0.13 0.74

Inner
product

2 /
16

0.033 0.68 0.22 0.50 0.09 0.72

SpMV
13 /
72

0.141 0.72 1.19 0.41
7.45
*0.51

0.04
*0.58

CR-SOR
(16) Lv.0

257 /
80

0.447 0.37 6.03 0.14 72.7 0.01

CR-SOR
(8) Lv.1

129 /
80

0.368 0.37 3.75 0.18 26.4 0.02

CR-SOR
(8) Lv.2

129 /
80

0.472 0.29 3.09 0.22 25.3 0.02

in a loop, it was necessary to perform manual inline

expansion for those functions and to replace the

conditional branch with integer flags. Thanks to these

optimization techniques, finally, the performance on

A64FX became comparable that on CPU and GPU.

CR-SOR kernel is computationally intensive kernel

on each MG level. Memory accesses are almost the

same as SpMV kernel, but this kernel computes

multiple SpMV processes on a local cache. The

performances on GPU and CPU were reasonable, tR/t >

0.35 on GPU and tR/t > 0.15 on CPU. On the other hand,

the performance on A64FX was quite low, tR/t < 0.02,

while we expected the similar sustained performance as

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
Final Report for JHPCN Joint Research of FY 2020

6

SpMV kernel. Although we investigated this issue with

our collaborators from Fujitsu, the performance

degradation was not resolved even with the above

manual optimization. Possible causes for this issue may

be deeper nested loops due to inner iterations and the

two-color ordering or very tight scheduling for on-cache

computing.

(2) Convergence Histories of MG-CG Method

The numerical experiments were conducted for two-

phase flows in a fuel bundle of a nuclear reactor shown

in Fig. 4. Since computational grids inside fuel pins are

removed, the total number of grids is reduced to

2.26×109, which is about 70% of the original uniform

Cartesian grid system.

Figure 5 shows convergence histories of the P-CG

solver and the MG-CG solvers with the RB-SOR

smoother (MG-CG) and with the CR-SOR smoother

(CRMG-CG). Although the P-CG solver required more

than 1,300 iterations until convergence, the number of

iterations in the MG-CG solver was 194, which was less

than 15% of the P-CG solver. The CRMG-CG solver

showed faster convergence with 114 iterations, which

was less than 9% of the P-CG solver.

(3) Strong Scaling Test on GPU

The strong scaling of JUPITER with the MG-CG and

CRMG-CG solvers is summarized in Fig. 6. In the

strong scaling test, we use 64, 128, 192, and 256 GPUs.

The labels of “Precondition”, “CG”, and “NS” indicate

the preconditioner, the CG method including the inner

product, and the Navier-Stokes solver with the explicit

time integration, respectively.

The breakdown of computational time on 64 GPUs

shows that Precondition accounts for more than 90% of

the total time, the remaining cost comes from CG, and

NS is negligible. A similar breakdown was observed up

to 256 GPUs. In the MG-CG and CRMG-CG solvers,

global collective communication in the CG method is

still negligible, and halo data communication gives a

dominant communication cost. The performance gains

of the CRMG-CG solver from 64 GPUs are 1.5×, 1.9

(A) (B)

Fig.4: (A) shows the computational domain for a 8×8 fuel
bundle. The size of the whole domain is 104 mm×104 mm
×312 mm. (B) shows the block-structured grid. Blue and
red leaves show fluid and boundary regions, which are
allocated in the simulation. Leaves inside the pins (white
area) are not allocated.

Fig.5: Convergence histories of the P-CG, MG-CG, and
CRMG-CG solvers. A large matrix from a two phase flow
problem in a 8×8 fuel bundle is computed using 64 GPUs.
The P-CG, MG-CG, and CRMG-CG solvers are
respectively converged with 1,306, 194, and 114 iterations.
The calculation time until convergence of the P-CG, MG-
CG, and CRMG-CG solvers are respectively 446, 142, and
76 seconds.

Fig.6: Strong scaling tests of JUPITER with the MG-CG
and CRMG-CG solvers up to 256 GPUs. The
computational condition is the same as Fig. 9. It is noted
that the total time of JUPITER with the P-CG solver is
447.5 second on 64 GPUs.

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
Final Report for JHPCN Joint Research of FY 2020

7

×, and 2.1× on 128, 192, and 256 GPUs, respectively.

It is noted that the calculation speed of the CRMG-CG

solver on 256 GPUs is 12 times faster than that of the

P-CG solver on 64 GPUs.

6. Progress during FY2020 and Future Prospects

This project developed a new MG-CG solver to

accelerate a three-dimensional two-phase flow CFD

code JUPITER. The MG-CG solver is designed to

achieve high performance on the block-structured

Cartesian grid.

We measured the kernel performance of the MG-CG

solver on CPU and GPU on TSUBAME, and A64FX on

FLOW. Although AXPY, inner product, and SpMV

kernels achieved reasonable performances on all

platforms, CR-SOR kernels showed a significant

performance degradations on A64FX. In the future

project, this issue will be investigated on FLOW and

BDEC under collaboration with Information

Technology Center, Nagoya Univ. and Information

Technology Center, Univ. Tokyo.

We discussed the convergence property for two-

phase flows in a fuel bundle. The number of iterations

of the MG-CG and CRMG-CG methods were

respectively less than 15% and 9% compared to the P-

CG method.

The strong scaling of JUPITER was measured from

64 to 256 GPUs. The performance gain of the CRMG-

CG solver from 64 GPUs to 256 GPUs was 2.1×. We

conclude that the redesigned JUPITER code is highly

efficient and enables large-scale simulations of two-

phase flows on GPU based supercomputers.

7. List of Publications and Presentations

(1) Journal Papers (Refereed)

(2) Proceedings of International Conferences

(Refereed)

� N. Onodera, Y. Idomura, Y. Hasegawa, S.

Yamashita, T. Shimokawabe, T. Aoki, “GPU

Acceleration of Multigrid Preconditioned

Conjugate Gradient Solver on Block-Structured

Cartesian Grid”, Proceedings of HPC Asia 2021,

2021/01, 査読有り

� N. Onodera, Y. Idomura, Y. Ali, S. Yamashita,

T. Shimokawabe, T. Aoki, “GPU-acceleration of

locally mesh allocated two phase flow solver for

nuclear reactors”, Proceedings of

SNA+MC2020, 2020/05, 査読有り

(3) International conference Papers (Non-refereed)

� N. Onodera, Y. Idomura, Y. Asahi, Y.

Hasegawa, S. Yamashita, T. Shimokawabe, T.

Aoki, “Multigrid Poisson Solver for a Block-

Structured Adaptive Mesh Refinement Method

on CPU and GPU supercomputers”, Compsafe

2020, 2020/12, 査読無し

(4) Presentations at domestic conference (Non-

refereed)

� 小野寺 直幸, 井戸村 泰宏, 長谷川雄太, 山下晋,

下川辺 隆史, 青木 尊之, “ブロック型適合細分化

格子を用いた気液二相流体解析手法の開発”, 原

子力学会 2021年春の年会, 2021/3, 査読無し

� 小野寺 直幸, 井戸村 泰宏, 朝比 祐一, 下川辺
隆史, 青木 尊之, “ブロック型適合細分化格子で
の Poisson 解法の GPU・CPU・ARMプロセッサ
に対する性能測定”, 第 34 回数値流体力学シンポ
ジウム, 2020/12, 査読無し

� 小野寺 直幸, 井戸村 泰宏, ユスフ アリ, 下川辺
隆史, 青木 尊之, “ブロック型適合細分化格子で
の Poisson 解法の GPU 高速化”, 計算工学講演会
論文集, 2020/06, 査読なし

