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We develop a multigrid preconditioned conjugate gradient (MG-CG) solver for the 
pressure Poisson equation in a two-phase flow CFD code JUPITER. The MG-CG 
solver is redesigned to realize efficient CFD simulations including complex 
boundaries and objects using an adaptive mesh refinement (AMR) method based on 
a block-structured Cartesian grid system. Here, we propose a new MG preconditioner 
with the cache reuse successive over relaxation (CR-SOR) smoother, which has high 
arithmetic intensity using the shared memory and enables continuous memory access 
on the block-structured grid. We measured the kernel performance of the MG-CG 
solver on GPU and CPU on the TSUBAME supercomputer, and A64FX on the FLOW 
supercomputer. The performances on the GPU and CPU are reasonable, but there are 
significant performance degradation on A64FX. The numerical experiments are 
conducted for two-phase flows in a fuel bundle of a nuclear reactor. Thanks to the 
block-structured data format, grids inside fuel pins are removed without performance 
degradation, and the total number of grids is reduced to 2.26×109, which is about 70% 
of the original uniform Cartesian grid system. The MG-CG solver with the CR-SOR 
smoother reduces the number of iterations to less than 9% of the original 
preconditioned CG method, leading to 5.9-times speedup on the TSUBAME 
supercomputer. In the strong scaling test, the MG-CG solver with the CR-SOR 
smoother is accelerated by 2.1 times between 64 and 256 GPUs. 
 
 

1. Basic Information 

(1) Collaborating JHPCN Centers  

・ The University of Tokyo 

・ Tokyo Institute of Technology 

・ Nagoya University 

(2) Research Areas 

n Very large-scale numerical computation 

(3) Roles of Project Members 

・ Naoyuki Onodera (JAEA, Representative, 

Development of a Poisson solver) 

・ Audit Edouard (CEA France, Deputy-
Representative, Advice and support) 

・ Takayuki Aoki (Tokyo Tech, Deputy-
Representative, Advice and support) 

・ Yasuhiro Idomura (JAEA, Advice and support for 
large-scale computation on TSUBAME) 

・ Yuta Hasegawa (JAEA, Development of a Poisson 
solver) 

・ Susumu Yamashita (JAEA, Development of a 
nuclear engineering code) 

・ Yuichi Asahi (JAEA, Porting codes on CPU/GPU 
platforms) 

・ Takashi Shimokawabe (Tokyo, Advice for large-
scale computations on Oakbridge-CX) 

・ Satoshi Oshima (Nagoya, Advice for large-scale 
computations on Flow) 

 

2. Purpose and Significance of Research 

(1) Research purpose 

This project aims at developing exascale computing 

technologies for multi-scale CFD simulations on 

exascale platforms. For this purpose, we promote a 

collaborative research with respect to the following 

three main subjects, a) High performance sparse matrix 

solvers on accelerated computing platforms, b) 

Adaptive Mesh Refinement (AMR) methods for multi-

scale turbulence problems with complicated boundaries, 

c) Performance portability of CFD codes based on 

advanced frameworks and programming models. 

The target CFD applications in this project are the 
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3D multi-phase multi-component thermal hydraulic 

CFD code JUPITER [Yamashita et al., Nuclear 

Engineering and Design 2017] and the 3D compressible 

hydrodynamic astrophysics CFD code ARK [Padioleau 

et al., Astrophysical Journal 2019]. JAEA has promoted 

the development of high-performance pressure Poisson 

solvers based on various Communication-Avoiding 

(CA) algorithms on the Oakforest-PACS [Idomura, 

ScalA18@SC18] and on the Summit [Ali, 

ScalA19@SC19] (Fig.1), and their strong scaling was 

demonstrated up to ~8,000 KNLs/V100s. In the 

FY2019 project, the development of a new AMR 

framework for JUPITER was conducted. On the other 

hand, CEA has developed ARK based on an AMR-

based compressible fluid model, and its performance 

portability between KNL and V100 was demonstrated 

using a programing model with MPI+Kokkos. ARK 

requires high performance matrix solvers for gravity 

Poisson solvers and implicit matrix solvers. 

In this project, we accelerate the development of 

common exascale computing technologies for AMR-

CFD simulations by sharing the knowledges on high 

performance matrix solvers, performance portability, 

and AMR methods. The developed technologies will 

contribute to various science and engineering CFD 

applications. 

(2) Significance of research 

a) High performance sparse matrix solvers on 

accelerated computing platforms 

Sparse matrix solvers for the pressure Poisson equation, 

the gravity Poisson equation, and implicit time 

integration are critical bottlenecks for high performance 

CFD simulations. In this project, we extend our CA 

algorithms such as CA multi-grid (CA-MG) solvers and 

CA-Krylov solvers to block (or patch) structured AMR 

grid data, and apply them to various nuclear engineering 

problems and astrophysics problems in JUPITER and 

ARK, respectively. By analyzing required precision in 

each problem, we explore optimum mixed precision 

approaches, which were already implemented in  

	
Fig.1: Strong scaling tests up to 7,680 GPUs on the 
Summit. A large JUPITER matrix with N = 1,280 × 1,280 
× 4,608 is computed using the Preconditioned CG method 
and the Preconditioned Chebyshev Basis Communication-
Avoiding CG method. 

JUPITER. If such an efficient implementation works for  

AMR-CFD simulations, it has a great impact on various 

engineering and science fields. 

b) AMR methods for multi-scale CFD problems  

AMR methods are promising solutions for multi-scale 

turbulence problems. Their parallel implementations 

have been designed to keep the balance of computing 

loads, e.g., via space filling curves. However, on 

accelerated computing platforms, the communication 

cost often becomes comparable or exceeds the 

computing cost. In such a situation, one needs to design 

a new parallel implementation by taking account of both 

computation and communication costs. In this work, we 

develop a new performance model of AMR-CFD 

simulation, which is of critical importance for various 

exascale AMR applications. 

c) Performance portability on multi-platforms 

Performance portability between CPU and GPU has 

been a long-standing issue. In addition, several new 

CPU and GPU architectures are emerging towards 

exascale supercomputers. This makes the performance 

portability issue more serious. In this work, first, we 

port miniapps from JUPITER and ARM via native 

programing models such as CUDA and OpenMP and 

via more portable programing models such as Kokkos, 

and investigate performance bottlenecks in the latter 

approach. From this performance study, we clarify the 

most efficient porting strategy and apply it to JUPITER 
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and ARK. 

 

3. Significance as JHPCN Joint Research Project 

The goals in this project are to develop extreme scale 

AMR-CFD simulations and to establish performance 

portability on the latest CPU and GPU platforms. For 

this purpose, we need to use several supercomputing 

systems, which are based on state-of-the-art CPUs and 

GPUs and have a large number of computing nodes. 

Such computing needs can be satisfied only by a 

JHPCN joint research project. 

 

4. Outline of Research Achievements up to 

FY2019 

Not applicable. 
 
5. Details of FY2020 Research Achievements 

5.1 JUPITER Code 

(1) Incompressible Two-Phase Flow Solver 

We solve two phase flows using an incompressible fluid 

model based on the Navier-Stokes equation. The 

Navier-Stokes equation consists of advection, diffusion, 

and external force terms with an explicit time 

integration method. Since the divergence-free condition 

on the velocity field is essential for mass conservation, 

the pressure Poisson equation is solved iteratively. As a 

pressure-velocity correction algorithm, the simplified 

marker and cell (SMAC) method is applied to JUPITER. 

After solving the pressure Poisson equation, the 

velocity field is modified with the updated pressure 

gradient. The time evolutions of the above Navier-

Stokes equation. 

The dynamics of the gas and liquid phases are 

described by a convection equation of the volume of 

fluid (VOF) function. A physical property in a cell is 

determined by the linearly weighted average of the 

VOFs for the gas and liquid phases. 

(2) Poisson Solver  

The main computational cost comes from the pressure 

Poisson equation discretized by the second order 

accurate centered finite difference scheme with seven 

stencils. Since the matrix is symmetric and diagonal-

dominant, the Poisson solver is normally computed 

using the P-CG method. 

In two-phase flow simulations, a large density ratio 

between gas and liquid increases the contrast of each 

matrix component. In addition, large-scale simulations 

have multi-scale features such as thin gas-liquid 

interfaces and complex object boundaries. These 

features deteriorate the convergence property, and thus, 

the improvement of preconditioning is of critical 

importance. 

(3) Geometric Multigrid Preconditioner  

The MG method is one of the most efficient 

preconditioners to reduce the computational cost and 

improve the convergence property in multi-scale 

problems. Since JUPITER is based on the block-

structured Cartesian grid system, we can use the 

geometric multigrid (GMG) method with a three-stage 

V-cycle shown in Fig. 2. In the GMG method, an 

approximate equation is solved at each MG level. The 

interpolation coefficients between MG levels are 

calculated geometrically.  

The choice of the smoother at each MG level is very 

important in terms of the computational cost and the 

convergence property. The red and black SOR (RB-

SOR) method is an efficient smoother, which has high 

thread parallelism. However, it requires multiple  

	

Fig.2: The geometric multigrid preconditioner based on a 
three-stage V-cycle with fine, middle, and coarse MG 
levels. The MG levels are defined within each leaf, in 
which the number of grids is reduced as 83, 43, and 23. A 
fixed iteration number is used for smoothers at each level. 
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memory accesses for the red and black phases 

alternatively to eliminate the dependency between 

adjacent grids. In this research, we propose a cache 

reuse SOR (CR-SOR) method, which can effectively 

reduce the residuals of local subdomain by multiple 

sub-iterations. 

(4) Block-Structured Cartesian Grid  

The original JUPITER code was developed based on a 

Cartesian grid system, whose resolution was chosen to 

reproduce the shape of the VOF function or the gas-

liquid interface with enough accuracy. However, there 

was a lot of memory wastage for nuclear engineering 

problems which contain complex non-fluid objects. In 

the block-structured AMR grid system, grid resolution 

is adaptively changed in each subdomain depending on 

the local scale of multi-scale solutions. Even without the 

change of grid resolution, the block-structured grid is 

beneficial, when the boundary is not aligned to the 

Cartesian grid and/or complex structures exist inside the 

computational domain. In this work, we use the block-

structured grid with uniform grid resolution and reduce 

the grids outside the boundary and inside the object.  

A data structure is very important from the 

viewpoint of the computational efficiency on CPU/GPU 

platforms. A block-structured grid has an efficient data 

structure, in which the whole domain is decomposed 

into block units named “Leaf”. Here, the leaves are 

connected by the forest-of-octree data structure. Since 

the leaf consists of a regular Cartesian grid system with 

n3 grids, continuous memory access is enabled. In this 

research, the size of leaf is set to n=8 by taking account 

of the above tradeoff.  

The block-structured grid can be easily extended to 

the MG method. It is possible to use the same forest-of-

octree structure as long as there is a grid in the leaf. We 

adopt the MG method with a three-stage V-cycle, in 

which the number of grids at fine, middle, and coarse 

MG levels are set to 83, 43, and 23, respectively.  

5.2 Implementation and Optimization 

(1) Implementation of JUPITER Code on Block-

Structured Cartesian Grid  

JUPITER is written in C++ and CUDA. The connection 

of the block-structured grid is managed by the forest-of-

octree data format, in which each array is based on the 

Structure of Array (SoA) memory layout. The same 

block-structure grid is used also in the MG method, 

where the offset index changes to 1/8 and 1/64 of the 

original resolution depending on the MG level. 

It is important to assign CPU, GPU and A64FX 

threads to grids in stencil computation. We implement a 

kernel as shown in Fig. 3. Outer loop as 

“FOR_EACH1D_BLOCKIDX” corresponds to the 

leaves, and inner loop as “FOR_EACH3D” is assigned 

to 83 grids in the leaf. Although the block-structured 

Cartesian grid system keeps continuous memory access 

as in the standard Cartesian grid system, special care has 

to be taken in the treatment of the leaves. Stencil 

computation for the block-structured grid requires the 

offset indices of the neighbor leaves, which are 

normally assigned to the register memory. One leaf 

refers to the offset indices of 26 surrounding leaves, and 

these indices can be shared by threads belonging to the 

same leaf. 

 
1:			
2:			
3:			 	
4:			 	
5:			 	
6:			 	
7:			 	
8:			 	
9:			
10:			 	
11:			 	
12:			 	
13:			 	
14:			 	
15:			 	
16:			
17:			 	 	
18:			
19:			
20:			
21:			 	 	
22:			
23:			
24:			 	 	
25:			
26:			
27:			
28:			
29:			
30:			

#ifdef __CUDA_ARCH__ 
  #define FOR_EACH1D_BLOCKIDX(L, NL) \ 
    const auto L = blockIdx.x 
 
  #define FOR_EACH3D(I,J,K, NX,NY,NZ) \ 
    const auto I = threadIdx.x \ 
    const auto J = threadIdx.y \  
    const auto K = threadIdx.z 
#else 
  #define FOR_EACH1D_BLOCKIDX(L, NL) \ 
    _Pragma(“omp parallel for”) \ 
    for(int L=0; L<NL; L++) 
 
  #define FOR_EACH3D(I,J,K, NX,NY,NZ) \ 
    PRAGMA_FOR_SIMD \ 
    for(int K=0; K<NZ; K++) \ 
    PRAGMA_FOR_SIMD \ 
    for(int J=0; J<NY; J++) \ 
    PRAGMA_FOR_SIMD \ 
    for(int I=0; I<NX; I++) 
#endif 
 
void cfd_function(...) 
{ 
  FOR_EACH1D_BLOCKIDX(l, num_amr_leaves){ 
    FOR_EACH3D(i,j,k,NX_LEAF,NX_LEAF,NX_LEAF){ 
      // operations at stencil (i,j,k, l) 
    } 
} 

} 

Fig.3: Pseudocode for stencil computation to call CPU and 
GPU instructions.  
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(2) Cache Reuse SOR Method  

The calculation speed of smoother is mainly limited by 

memory read/write time rather than the cost of floating-

point operations. The RB-SOR method requires global 

memory access twice for the red and black phases, 

which causes performance degradation. To resolve this 

issue, we propose a new CR-SOR method [Onodera et 

al., HPC Asia 2021]. The computational domain is 

divided hierarchically in order to resolve dependencies 

between leaves and grids inside the leaf. One is coarse 

domain decomposition for MPI parallelization (MPI 

domain), and the other is fine block decomposition for 

cache optimization (cache block). In the outer iteration, 

each MPI domain is processed for n times with a two-

color ordering. In the inner iteration, the RB-SOR 

method within each cache block is computed for m 

times to accelerate the convergence. 

5.3 Numerical Experiment 

(1) CG Kernel Performances on TSUBAME and 

FLOW 

We evaluated the kernel performance of CG solvers in 

JUPITER on multiple platforms. Table 1 shows 

hardware metrics of GPU and CPU on TSUBAME, and 

A64FX on FLOW. Table 2 shows the kernel 

performance analysis against the modified roofline 

model [Shimokawabe et al., SC’10, 2010].  

AXPY and inner product kernels are memory 

intensive kernels without neighbor stencil access. Since 

the block-structured data format enables continuous 

memory access in the leaf, these kernels achieved ideal 

sustained performance with the performance ratio 

against the roofline model tR/t > 0.5. 

SpMV kernel is a very important kernel, because 

SOR kernels also have similar memory access. The 

performances on GPU and CPU are reasonable, but 

there is a significant performance degradation on 

A64FX. According to the optimization report, the 

innermost loop was not SIMD-optimized due to inline 

functions and a conditional branch in the loop. Since 

Fujitsu C++ compiler cannot optimize any function call  

Table 1: Hardware metrics of the TSUBAME and Flow 
platforms. 

 TSUBAME 
NVIDIA 
P100 

TSUBAME 
Broadwell 
(2 sockets) 

FLOW 
A64FX 
(1 CMG) 

Performance 
[GFlops] 

4700 851.1 844.8 

Bandwidth 
[GByte/s] 

732 153.6 256 

Compiler: 
compiler 
options 

nvcc -O3  
-restrict 
-use_fast_ 
math 

icpc -O3  
-qopenmp  
-AVX2 -ipo 
-restrict  

mpiFCCpx  
-O3 -Kfast, 
parallel, openmp, 
restp=all 

 
Table 2: Kernel performance analysis: Floating point 
operation f [Flop/grid], Memory access b [Byte/grid], 
Elapse time t [ns/grid], Roofline time tRL = f /F + b/B 

[ns/grid]. Here F is Peak performance [Flops], and B is 
memory band-width [Byte/s]. (Note: The symbol * indicates 

the performance after optimization.) 

PCG kernels 
TSUBAME 
NVIDIA 
P100 

TSUBAME 
Broadwell 
(2 sockets) 

FLOW 
A64FX 
(1 CMG) 

 f / b t tRL/t t tRL/t t tRL/t 

AXPY 
3 /  
24 

0.045 0.75 0.26 0.62 0.13 0.74 

Inner 
product 

2 /  
16 

0.033 0.68 0.22 0.50 0.09 0.72 

SpMV 
13 /  
72 

0.141 0.72 1.19 0.41 
7.45 
*0.51 

0.04 
*0.58 

CR-SOR 
(16) Lv.0 

257 /  
80 

0.447 0.37 6.03 0.14 72.7 0.01 

CR-SOR 
(8) Lv.1 

129 /  
80 

0.368 0.37 3.75 0.18 26.4 0.02 

CR-SOR 
(8) Lv.2 

129 /  
80 

0.472 0.29 3.09 0.22 25.3 0.02 

 

in a loop, it was necessary to perform manual inline 

expansion for those functions and to replace the 

conditional branch with integer flags. Thanks to these 

optimization techniques, finally, the performance on 

A64FX became comparable that on CPU and GPU.  

CR-SOR kernel is computationally intensive kernel 

on each MG level. Memory accesses are almost the 

same as SpMV kernel, but this kernel computes 

multiple SpMV processes on a local cache. The 

performances on GPU and CPU were reasonable, tR/t > 

0.35 on GPU and tR/t > 0.15 on CPU. On the other hand, 

the performance on A64FX was quite low, tR/t < 0.02, 

while we expected the similar sustained performance as 
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SpMV kernel. Although we investigated this issue with 

our collaborators from Fujitsu, the performance 

degradation was not resolved even with the above 

manual optimization. Possible causes for this issue may 

be deeper nested loops due to inner iterations and the 

two-color ordering or very tight scheduling for on-cache 

computing. 

(2) Convergence Histories of MG-CG Method 

The numerical experiments were conducted for two-

phase flows in a fuel bundle of a nuclear reactor shown 

in Fig. 4. Since computational grids inside fuel pins are 

removed, the total number of grids is reduced to 

2.26×109, which is about 70% of the original uniform 

Cartesian grid system. 

Figure 5 shows convergence histories of the P-CG 

solver and the MG-CG solvers with the RB-SOR 

smoother (MG-CG) and with the CR-SOR smoother 

(CRMG-CG). Although the P-CG solver required more 

than 1,300 iterations until convergence, the number of 

iterations in the MG-CG solver was 194, which was less 

than 15% of the P-CG solver. The CRMG-CG solver 

showed faster convergence with 114 iterations, which 

was less than 9% of the P-CG solver. 

(3) Strong Scaling Test on GPU 

The strong scaling of JUPITER with the MG-CG and 

CRMG-CG solvers is summarized in Fig. 6. In the 

strong scaling test, we use 64, 128, 192, and 256 GPUs. 

The labels of “Precondition”, “CG”, and “NS” indicate 

the preconditioner, the CG method including the inner 

product, and the Navier-Stokes solver with the explicit 

time integration, respectively. 

The breakdown of computational time on 64 GPUs 

shows that Precondition accounts for more than 90% of 

the total time, the remaining cost comes from CG, and 

NS is negligible. A similar breakdown was observed up 

to 256 GPUs. In the MG-CG and CRMG-CG solvers, 

global collective communication in the CG method is 

still negligible, and halo data communication gives a 

dominant communication cost. The performance gains 

of the CRMG-CG solver from 64 GPUs are 1.5×, 1.9 

  

(A)                                         (B) 

Fig.4: (A) shows the computational domain for a 8×8 fuel 
bundle. The size of the whole domain is 104 mm×104 mm
×312 mm. (B) shows the block-structured grid. Blue and 
red leaves show fluid and boundary regions, which are 
allocated in the simulation. Leaves inside the pins (white 
area) are not allocated. 

 

 

Fig.5: Convergence histories of the P-CG, MG-CG, and 
CRMG-CG solvers. A large matrix from a two phase flow 
problem in a 8×8 fuel bundle is computed using 64 GPUs. 
The P-CG, MG-CG, and CRMG-CG solvers are 
respectively converged with 1,306, 194, and 114 iterations. 
The calculation time until convergence of the P-CG, MG-
CG, and CRMG-CG solvers are respectively 446, 142, and 
76 seconds. 

 

 

Fig.6: Strong scaling tests of JUPITER with the MG-CG 
and CRMG-CG solvers up to 256 GPUs. The 
computational condition is the same as Fig. 9. It is noted 
that the total time of JUPITER with the P-CG solver is 
447.5 second on 64 GPUs. 
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×, and 2.1× on 128, 192, and 256 GPUs, respectively. 

It is noted that the calculation speed of the CRMG-CG 

solver on 256 GPUs is 12 times faster than that of the 

P-CG solver on 64 GPUs. 

 

6. Progress during FY2020 and Future Prospects 

This project developed a new MG-CG solver to 

accelerate a three-dimensional two-phase flow CFD 

code JUPITER. The MG-CG solver is designed to 

achieve high performance on the block-structured 

Cartesian grid.  

We measured the kernel performance of the MG-CG 

solver on CPU and GPU on TSUBAME, and A64FX on 

FLOW. Although AXPY, inner product, and SpMV 

kernels achieved reasonable performances on all 

platforms, CR-SOR kernels showed a significant 

performance degradations on A64FX. In the future 

project, this issue will be investigated on FLOW and 

BDEC under collaboration with Information 

Technology Center, Nagoya Univ. and Information 

Technology Center, Univ. Tokyo. 

We discussed the convergence property for two-

phase flows in a fuel bundle. The number of iterations 

of the MG-CG and CRMG-CG methods were 

respectively less than 15% and 9% compared to the P-

CG method.  

The strong scaling of JUPITER was measured from 

64 to 256 GPUs. The performance gain of the CRMG-

CG solver from 64 GPUs to 256 GPUs was 2.1×. We 

conclude that the redesigned JUPITER code is highly 

efficient and enables large-scale simulations of two-

phase flows on GPU based supercomputers. 
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