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Abstract Coronary heart disease is a leading cause of death worldwide. The main 
cause of coronary heart disease is coronary stenosis, which is mainly due to 
atherosclerosis. Recently, computational fluid dynamics (CFD) has been used to 
compute the blood flow for patient-specific artery with medical images in diagnosing 
ischemic stenosis. However, CFD simulation requires a lot of computational resources 
and time. Therefore, in order to use CFD in clinical practice, it is essential to 
accelerate CFD analysis. In this project, we will use deep learning to build a fast 
surrogate for approximating the 3D blood flow simulation. In this year, we have 
developed the method that combines neural network inference and boundary 
exchange to predict the 3D simulation results in large computational domains. This 
method allows us to apply the same neural network architecture to any size of 3D 
input data. 
 

1 Basic Information 
(1) Collaborating JHPCN Centers  

The University of Tokyo 
(2) Research Areas 

n Very large-scale numerical computation 
n Very large-scale data processing 
o Very large capacity network technology 
o Very large-scale information systems 

(3) Roles of Project Members 

• Takashi Shimokawabe (The University of 
Tokyo): Development of a method for 
predicting large-scale simulation results 

• Weichung Wang (National Taiwan 
University): Development of deep learning, 
surrogate modelling and algorithm designs 

• Naoyuki Onodera (Japan Atomic Energy 
Agency): Advice and support to apply deep 
learning to CFD simulations 

• Kengo Nakajima (The University of Tokyo): 
Advice and support for large-scale 
computations 

• Toshihiro Hanawa (The University of 
Tokyo): Advice for large-scale deep learning 

• Masashi Imano (The University of Tokyo): 
Advice and support for using OpenFOAM 

• Hayato Shiba (The University of Tokyo): 
Advice and support of CFD and medical 
simulations 

• Hiromichi Nagao (The University of Tokyo): 
Advice on machine learning methods 

• Hiroya Matsuba (The University of Tokyo): 
Advice on machine learning execution 
environment 

• Shlok Mohta (The University of Tokyo): 
Development of a surrogate for predicting 
large-scale CFD simulation 

• Sora Hatayama (The University of Tokyo): 
Development of a method for predicting 
large-scale simulation results 

• Atsushi Hasegawa (The University of 
Tokyo): Development of a surrogate for 
predicting large-scale CFD simulation 

• Shota Suzuki (The University of Tokyo): 
Development of CFD simulations 

• Cheng-Ying Chou (National Taiwan Normal 
University): Advice and support of CFD and 
medical imaging 

• Che-Yu Hsu (National Taiwan University 
Hospital): Advice and support of medical 
backgrounds and knowledge 
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• Yikai Kan (National Taiwan University): 
Development of CFD simulations and deep 
learning 

• Mei-Heng Yueh (National Taiwan Normal 
University): Development of computational 
geometry 

• Wanyun Yang (National Taiwan 
University): Development of CFD 
simulations and deep learning 

• Yuehchou Lee (National Taiwan 
University): Development of CFD 
simulations and deep learning 

2 Purpose and Significance of Research 
 Coronary heart disease is a leading cause 
of death worldwide. The main cause of 
coronary heart disease is coronary stenosis, 
which is mainly due to atherosclerosis. 
Fractional flow reserve (FFR) is defined as 
the ratio between distal pressure and 
proximal pressure and has been used as a 
standard tool to diagnose the severity of 
coronary stenosis. Recently, computational 
fluid dynamics (CFD) has been used to 
compute the blood flow and FFR for patient-
specific artery. Some clinical trials 
demonstrated that the method combining 
CFD and medical image is better than the 
method using medical image solely in 
diagnosing ischemic stenosis. However, this 
method can be computationally demanding 
because it may take hours to perform CFD 
simulation. This drawback may limit the 
usage of this method in clinic practice. 
Therefore, it is indispensable to accelerate 
the process of CFD analysis. 
 In this study, we will use deep learning to 
build a fast surrogate for approximating the 
3D blood flow simulation. We will also 
develop a parallelization method to make it 
possible to apply the deep learning to large-

scale geometry. This method divides the 
large-scale geometry into multiple parts and 
applies deep learning in parallel to them. 
This makes it possible to approximate a 
large-scale 3D blood flow simulation. 

3 Significance as JHPCN Joint Research 
Project 
 In this project, we are developing a fast 
surrogate that approximates 3D blood flow 
simulation using deep learning and a 
parallelization method of the surrogate for 
applications with large-scale geometry. 
Since we perform a large number of CFD 
simulation to generate training data sets 
and train neural networks with these data 
sets to build the surrogate, a lot of 
computational resources are indispensable 
to realize this project. We uses a lattice 
Boltzmann method (LBM) code and 
OpenFOAM mainly as CFD solvers. Since 
LBM can achieve high performance on 
GPUs, we have exploited Reedbush-L at the 
University of Tokyo to generate the training 
data sets. We have also utilized Oakforst-
PACS to generate the training data sets 
withy OpenFOAM. We have utilized both 
Oakforst-PACS and Reedbush-L for 
training deep neural networks, since the 
deep learning frameworks achieve high 
performance with Xeon Phi and GPUs, 
which are installed on Oakforst-PACS and 
Reedbush-L, respectively. This project is 
being carried out by collaborative research 
by blood flow experts, CFD experts, the 
experts of large-scale deep learning, and 
high-performance computing experts. 
Therefore, implemented as a JHPCN joint 
research project, this project has been able 
to effectively carry out collaborative 
research and achieve research results. 
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4 Outline of Research Achievements up to 
FY2019 

 In our previous research, we have 
developed a method to predict the 
simulation results in large computational 
domains in 2D. This method combines 
neural network inference and boundary 
exchange. It exploits neural network to 
predict the simulation results of each 
subdomain and exchanges boundary 
between neighbor subdomains to maintain 
consistency in them. This method allows us 
to apply the same neural network 
architecture to any size of input data. We 
performed steady-state flow simulations 
with objects of simple shapes by using the 
lattice Boltzmann method (LBM). Using 
these results as training data sets, we 
trained the our neural networks. By using 
these networks with boundary exchange, 
our proposed method successfully predicted 
the results of a large-scale 2D steady flow. 
 

5 Details of FY2020 Research 
Achievements 
 In this year, we improved the prediction 
method for 2D large-scale steady flow 
simulations. In the last year, we used Chainer 
as a deep learning framework to construct a 
convolutional neural network (CNN) model. 
However, since the development of Chainer 
was discontinued, we replaced it with PyTorch. 
We have trained this model on a single GPU 
and have also successfully trained it on 
multiple GPUs using Horovod. We have also 
developed a method for predicting 3D 
simulation results by extending the prediction 
method for 2D. We have also improved our 
LBM simulation code to enable the 
computation of flow around objects in order to 

exploit this code for the blood flow simulation. 
5.1 Overview and update of the CNN 

prediction method for 2D simulations 
 In this section, we describe the overview 
and update of the proposed prediction method 
for 2D simulation results. In this year, all the 
network models developed last year using 
Chainer are implemented again using 
PyTorch. 
 The LBM, which has attracted much 
attention in recent years, is used for efficient 
execution of large-scale simulations. In this 
study, we use the simulation results of steady 
flows with this method as training dataset to 
train a deep learning model and create a fast 
surrogate model. In the prediction of the 
steady-state flow around objects by deep 
learning, it is known that the signed distance 
function (SDF), which represents the distance 
to the geometry, is effective in improving the 
prediction accuracy. SDF is used for the LBM 
simulation and is utilized as inputs for 
prediction by deep learning models. 
 Figure 1 shows the structure of the 
neural network used in this prediction method 
for 2D. In this method, the object shape by 
SDF and the flow velocity in the boundary 
region (boundary condition) are given as 
inputs to the neural network, and the 
prediction of the velocity obtained by the LBM 
simulation over the entire computational 
domain is obtained as outputs. The first part 
of the network is a common network in the x 
and y directions before a fully connected layer, 
while the second part of the network is 
different in each direction. In addition, the 
existence of the geometrical shape at each grid 
point is obtained from the input SDF and 
applied to the CNN predictions as masks. As 
a result, only the predicted velocity in the fluid 
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Figure2: Learning curves using multiple 
GPUs on Reedbush-L. 
 
region where no object exists is considered as 
the final predicted velocity. The width of the 
boundary region used as a boundary condition 
is set to 5 in order to improve the prediction 
accuracy, whereas it was set to 1 in the 
previous year.  
 In order to make training more efficient, 
we introduce Horovod to train neural 
networks with multiple GPUs. Figure 2 shows 
the learning curves when the number of GPUs 
used for training is varied. The Reedsbush-L 
supercomputer at the University of Tokyo was 
used for the training. We have succeeded in 
accelerating training with multiple GPUs. 

5.2 CNN prediction method for the 3D 
simulation results 

 In this section, we describe the proposed 

prediction method for 3D simulation results. 
 Figure 3 shows the structure of the 
neural network used in this method for 3D. 
Similar to the 2D case, the object shape by 
SDF and the x, y and z flow velocity in the 
boundary region are given as inputs to the 
neural network, and the prediction of the 
velocity calculated by the LBM simulation 
over the entire computational domain is 
obtained as outputs. This model is also 
written using PyTorch. 

We explain the data set of the neural 
network used in our method. First, we place 
one sphere in a 150 × 150 × 150 
computational  domain and simulate a 
fluid with a Reynolds number of 20 flowing 
from negative to positive in the x direction 
by LBM. The size and position of the 
spheres to be placed are changed to perform 
several steady flow simulations.  

Next, 27 computational domains of 32 × 
32 × 32 are cut out from the LBM simulation 
results in each 150 × 150 × 150 domain. The 
areas to be cut out should not overlap each 
other. In order to use SDF as the input, we 
also prepare the SDF data corresponding to 
each 32 × 32 × 32 computational domain. 
 We thus prepare a total of 3,456 
combinations of the LBM calculation results  
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Figure1: Network architecture for 2D geometry. 
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Figure4: Prediction results of a single 
domain in 3D. The CNN predictions, the 
LBM ground truth, and the error between 
the prediction and the ground truth at y = 
16 are shown. 
 
and SDF for the 32 × 32 × 32 domains, 3,110 
for training and 346 for evaluation.  
 Figure 4 shows the results of the 
prediction using our trained model for 3D. 
It can be seen that the proposed method is 
highly accurate. Using a single NVIDIA 
GPU (Tesla P100) on Reedbush 
supercomputer on the University of Tokyo, 
it takes 321 seconds (27,000 time steps) to 
reach the steady state using the LBM 
simulation code. On the other hand, the 

proposed method using CNN requires 0.6  
seconds on one GPU. The proposed method 
can reduce the calculation time by 99%. 

5.3 Prediction method using CNN with 
boundary exchange for the large-scale 3D 
simulation results 

 The method of predicting LBM 
simulation results using CNN described in 
Section 5.2 can only predict the results in 
the domain size of the data used in the 
training dataset. Therefore, in this study, 
we propose an extension of this method to 
be used for predicting computational results 
over a larger domain than the domain size 
of the data used in the training dataset. 
This proposed method allows us to apply the 
same neural network architecture to any 
size of input data. 
 Figure 5  shows the prediction 
procedure of the LBM simulation results in 
this method. In this method, the entire 
prediction region is divided into 32 × 32 × 32 
subregions and the simulation results in 
each subregion are predicted using the CNN 
model. The boundary regions of the 
neighboring subregions are overlapped. 
After the prediction is completed once, the 
prediction value of the boundary region is 
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Figure3: Network architecture for 3D geometry. 
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Figure 5: Prediction procedure using an 
iterative loop with boundary exchange. 
 
obtained from the adjacent subregions, and 
the prediction is performed again by using 
this as the input. By repeating this process 
with an iterative loop, the values of the 
boundaries of subregions become 
continuous. The prediction result for the 
entire region is obtained. Note that 
although Figure 5 shows an example of 
three divisions in the y direction for 
simplicity, the number of divisions can be 
specified arbitrarily for the x, y and z 
directions. 

Figure 6 shows the predicted results 
when a sphere is placed in a region of 87 × 
87 × 87 and a fluid with a Reynolds number 
of 20 flows in the x positive direction. This 
figure shows the predictions of flow velocity 
in the x, y and z directions using this 
method, the ground truth of the velocity 
obtained by the LBM simulation, and the 
error between the predictions and the LBM 
ground truth. The prediction results show 
the initial and final value of the iterative 
loop. In this case, the final loop number is 
10. In the prediction in this figure, the 
entire prediction region is divided into a 
total of 27 subregions, 3 in each direction. 
It can be seen that the values of the 
predicted velocity are discontinuous 
between subregions at the initial state of 
the iterative loop but almost continuous at 
the final state for all directions. Although 
the errors are reduced by the iterative loops, 
the errors in the final state are still 
relatively large at the boundaries between 
subregions. 

Figure 6: Prediction results over a large computational domain consisting of several subregions. 
The CNN predictions (initial and final values), the LBM ground truth, and the error between the 
prediction and the ground truth at y = 40 are shown. 
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6 Progress during FY2020 and Future 
Prospects 

 In this research project, we have 
developed a prediction method for 2D large-
scale steady-state flow simulations using 
deep learning inference and boundary 
exchange. We originally used Chainer as the 
framework for deep learning. However, since 
the development of Chainer was discontinued, 
we replaced it with PyTorch as we planned. 
We have introduced Horovod, which enables 
us to train the CNN models on multiple GPUs. 
We have extended the 2D method to predict 
large-scale 3D steady flow simulations. 
Unlike the results of 2D prediction, the 
results of 3D prediction by the proposed 
method still have a large error at the 
boundary regions of subdomains, which 
needs to be solved in the future. 
 The research plan for the next year is 
described below. We will improve a prediction 
method for large-scale computational results 
in 3D. As our research progressed, unlike the 
2D case, it was found that in 3D it is difficult 
to predict the flow velocity over the entire 
area of multiple domains from only the 
geometry and the velocity at the boundaries. 
To solve this problem, further development is 
needed. We will also improve our in-house 
CFD solver, which is used to generate the 
training dataset, to be able to handle complex 
geometry. We will show that the proposed 
prediction method is effective for predicting 
the flow around complex geometry. Finally, 
we will apply the method to the prediction of 
flow in blood vessels. 
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