
Joino Usage/Research Cenoer for Inoerdisciplinary Large-scale Informaoion Infrasorucoures

Final Reporo for JHPCN Joino Research of FY 2020

1

jh200036-MDHI

Highiresolutionisimulationioficardiacielectrophysiologyionirealisticiwhole-hearti

geometriesi

Kengo Nakajima（The University of Tokyo）

Abstract

This international project in JHPCN aims to combine the expertise of The University of

Tokyo in HPC and the expertise of Simula Research Laboratory (Norway) in cardiac

modeling, with the objective of enhancing a 3D simulator of cardiac electrophysiology over

realistic whole-heart geometries. The enhanced 3D simulator is expected to efficiently use

modern supercomputers, such as Oakforest-PACS and Oakbridge-CX, to simulate realistic

scenarios of electrophysiology in the heart. These high-resolution and biologically-detailed

simulations are considered as an important tool for advancing the scientific understanding

of the electrophysiology in the heart, and eventually for improving the medical treatment

and drug design of various heart diseases.

 The start of this 2-year project is an existing simulator of cardiac electrophysiology. We

aim to carry out a series of improvements with respect to both the software implementation

and the underlying numerical strategy. Specifically, SIMD vectorization will be enabled to

deliver high single-core performance of the non-memory-traffic constrained computational

tasks. OpenMP parallelization will be combined with MPI-based parallelization to achieve

optimal single-node performance. Multi-thread-tasking will be investigated, together with

suitable data restructuring, for alleviating the MPI communication overhead in multi-node

simulations. Implicit integration in the time direction will be adopted and implemented to

allow larger timesteps, thereby giving the potential of overall time saving.

1. Basic Information

(1) Collaborating JHPCN Centers

Information Technology Center, Univ. Tokyo

(2) Research Areas

 Very large-scale numerical computation

 Very large-scale data processing

 Very large capacity network technology

 Very large-scale information systems

(3) Roles of Project Members

 Kengo Nakajima (U Tokyo): Project administration,

numerical algorithms and parallel programming.

 Xing Cai (Simula/Norway): Numerical algorithms,

code parallelization and optimization, as well as

project coordination together with Prof. Nakajima.

 Akihiro Ida (U Tokyo): Numerical algorithms and

parallel programming.

 Toshihiro Hanawa (U Tokyo): Code parallelization,

profiling and optimization.

 Masatoshi Kawai (U Tokyo): Numerical algorithms

and parallel programming.

 Tetsuya Hoshino (U Tokyo): Code parallelization,

profiling and optimization.

 Masaharu Matsumoto (U Tokyo): Numerical

algorithms and parallel programming.

 Glenn Terje Lines (Simula/Norway): Cardiac

electrophysiology, mathematical modeling.

 Johannes Langguth (Simula/Norway): Code

parallelization, profiling and optimization.

 Jonas van den Brink (Simula/Norway): Preparation

of geometries and physiological parameters for

subcellular simulations.

 Kristian Gregorius Hustad (Simula/Norway): Code

parallelization, profiling and optimization.

 Hermenegild Arevalo (Simula/Norway): Preparation

of geometries and parameters, running

simulations, result analysis.

2. Purpose and Significance of Research

Coordinated electrical activities in the heart are vital for

its function. Biophysically accurate simulations of cardiac

electrophysiology require extremely fine spatial and

temporal resolutions. In addition, unstructured

computational meshes must be adopted to precisely

capture the realistic 3D geometry of the heart. The

relevant mathematical model in this context is a nonlinear

Joino Usage/Research Cenoer for Inoerdisciplinary Large-scale Informaoion Infrasorucoures

Final Reporo for JHPCN Joino Research of FY 2020

2

3D reaction-diffusion equation, with the transmembrane

electrical potential being the primary unknown field,

while calcium handling in each computational cell is

described by a system of nonlinear ordinary differential

equations (ODEs). Such a whole-heart simulation, if

using tens of millions of computational cells, can easily

take hours or even days of execution time by current

mainstream simulation codes when running on a small or

medium-scale cluster of multicore CPUs. The slow turn-

around times have so far limited the use of such

ambitious simulations in a realistic setting where

computational cardiologists can for example experiment,

“in-silico”, about how/when/where arrhythmia arises, or

the sensitivity of certain dysfunctions of the heart with

respect to the calcium channel mechanism and/or the

conductivity properties of the heart.

In this project, we aim to increase the scale of state-

of-the-art whole-heart simulations by tenfold, i.e., using

hundreds of millions of computational cells instead of

tens of millions. At the same time, we have the ambition

of reducing the turn-around time from hours to minutes.

We will achieve these ambitious goals by combining

performance-enhancing numerical strategies, hardware-

aware code optimization and parallelization-overhead

reduction. It is also remarked that the core computations,

i.e., numerically solving partial differential equations

(PDEs) on unstructured meshes and millions of ODE

systems, are present in many other computational science

applications. This means that the advances achieved in

this proposed project will extend well beyond the domain

of cardiac electrophysiology simulations.

3. Significance as JHPCN Joint Research Project

The necessity of implementing this JHPCN joint research

project is due to two aspects. First, UTokyo has world-

leading expertise in implementing and optimizing

advanced numerical code. This expertise has been built

up via developing real-world applications for running on

cutting-edge supercomputers at UTokyo. Such hands-on

experience on supercomputing is lacking for the

Norwegian partner. Second, the Oakforest-PACS and

Oakbridge-CX systems (plus the upcoming Wisteria

system) are of a suitable size for achieving the ambitious

goal of this project, whereas access to world-leading

supercomputers has been very scarce for the Norwegian

partner. The two hardware systems also provide a

valuable testbed for the performance portability of the

simulation codes to be developed. The high-speed file

cache systems available at UTokyo also provide good

possibilities of in-situ huge-scale data analysis.

4. Outline of Research Achievements up to FY2019

jh20036 is is partially related to, but not a direct

continuation of, JHPCN project jh180024/jh190040

(Physiologically realistic study of subcellular calcium

dynamics with nanometer resolution), which has obtained

good results about optimizing cardiac simulations on

regular computational meshes.

5. Details of FY2020 Research Achievements

(1) Overview

Overall, the 3D simulator of cardiac electrophysiology

carries out a time integration where each iteration

consists of first individually solving a system of nonlinear

ODEs (the so-called cell model that models the

transmembrane ionic currents and cellular calcium

handling) on each computational cell, and then solving a

3D diffusion equation (PDE) that couples all the

computational cells in a realistic whole-heart geometry.

The research achievements during FY2020 center around

improving the performance of the ODE and PDE

computations, which are detailed below. Generally,

problems are solved explicitly in time direction, where

invserins of large-scale matrices are not required.

Because implicit integration in the time direction allows

larger timesteps, thereby giving the potential of overall

time saving, we plan to introduce and implement implicit

integration in time direction. In FY.2020, preliminary

studies for implicit methods using multigrid methods

were also conducted.

Joino Usage/Research Cenoer for Inoerdisciplinary Large-scale Informaoion Infrasorucoures

Final Reporo for JHPCN Joino Research of FY 2020

3

(2) Enabling SIMD vectorization of ODE computation

The numerical solution of the ODEs per computational

cell typically adopts explicit time integrators such as the

forward Euler (FE) method or the general first-order

Rush-Larsen (GRL1) method. The associated

computational intensity (number of floating-point

operations per memory load/store) is relatively high. This

means that enabling SIMD vectorization on modern CPU

architectures is important for achieving good

performance of the ODE computation, which was lacking

on the existing simulator before the project start.

There are in general two strategies for SIMD

vectorization. The first is to rely on the automatic

vectorization capability of compilers, whereas the second

is to directly insert SIMD vectorization intrinsics (such as

AVX2 or AVX-512) or use a portable vectorization

library such as VCL. During FY2020 we have tested both

strategies of SIMD vectorization.

To help trigger automatic vectorization by the compiler,

we have found that it is important to restructure the

overall data structure in the following way. Instead of

storing together the various ODE state variables for each

cell (such that the data structure for all the cells is “an

array of structs”), which is adopted by the old simulator,

we have grouped each state variable from all the cells

together (such that the overall data structure is now “a

struct of arrays”). Another useful hint given to the

compiler is the omp simd directive associated with

OpenMP parallelization of the loop that traverses all the

cells. (The ODE computation is embarrassingly parallel

over the cells.) On the Oakbrige-CX system, in order to

encourage the compiler to automatically adopt AVX-512

intrinsics instead of AVX2, we found it necessary to add

the clause of simdlen(8) in addition, which already seems

to be the default behavior of the Intel compiler on

Oakforest-PACS. For comparison, we have also used the

VCL library to explicitly vectorize the ODE computation.

Experiments have shown that this manual approach does

not bring any noticeable performance benefits over the

automatic compiler vectorization (at least when AVX-

512 intrinsics are automatically enabled). Therefore, the

automatic vectorization approach is favored, due to its

simplicity and minimum code restructuring required.

In the following, we report the achieved ODE

computation performance in various tests. These

experiments cover both Oakforest-PACS and Oakbridge-

CX, and three biologically detailed cell ODE models are

investigated: the 19-state Ten-Tusscher-Panfilov model

from 2006 (TT06), the 24-state Jæger-Tveito model (JT),

and the 39-state Grandi-Pasqualini-Bers model (GPB).

The used ODE solvers are the forward-Euler (FE) method

and the generalized first-order Rush-Larsen (GRL1)

method. For all the experiments, instead of reporting the

detailed time results, we use the performance metric as

millions of cell steps executed per second (the higher the

better). We can see from Figures 1-8 that compiler-

enabled automatic vectorization provides substantial

performance improvement over a naïve version without

SIMD vectorization. The Oakbridge-CX system provides

better ODE performance than the Oakforest-PACS

system, in both single-thread and single-node scenarios,

independent of the cell model and the ODE solver.

method.

Figure 1 Single-thread ODE performance on Oakbridge

Joino Usage/Research Cenoer for Inoerdisciplinary Large-scale Informaoion Infrasorucoures

Final Reporo for JHPCN Joino Research of FY 2020

4

Figure 2 Single-thread ODE performance on Oakbridge

Figure 3 Single-thread ODE performance on Oakforest

Figure 4 Single-thread ODE performance on Oakforest

Figure 5 Single-node ODE performance on Oakbridge

Figure 6 Single-node ODE performance on Oakbridge

Figure 7 Single-node ODE peformance on Oakforest

Joino Usage/Research Cenoer for Inoerdisciplinary Large-scale Informaoion Infrasorucoures

Final Reporo for JHPCN Joino Research of FY 2020

5

Figure 8 Single-node ODE performance on Oakforest

(3) Mixing OpenMP and MPI parallelization for PDE

computation

Each compute node of the Oakbridge-CX and Oakforst-

PACS systems has, respectively, 56 and 68 cores. The

latter is also well known to support 4 threads per core.

The old simulator focused on using MPI parallelization

both inter-node and intra-node, thus having the risk of

extensive MPI overhead when using a large number of

compute nodes. We have therefore enabled

OpenMP+MPI parallelization for the PDE computation

(the same as for the ODE computation).

In Figure 9, we study the obtained PDE performance on a

single compute node of Oakbridge-CX, where we change

the number of MPI processes used while keeping the total

number of OpenMP threads at 56. The reported PDE

performance uses the metric of “effective memory

bandwidth achieved”, which is calculated as the

minimum incurred amount of memory traffic (assuming

perfect caching) divided by the time used. We can see

that using one MPI process that spawns 56 OpenMP

threads gives the best single-node PDE performance. It

can also be observed that the effective memory

bandwidth achieved is quite close to the STREAM

benchmark measured memory bandwidth, meaning that

the single-node PDE performance is approaching its

realistic upper limit on Oakbridge-CX.

Figure 9 Single-node PDE performance on Oakbridge

On the Oakforest-PACS system, good single-node PDE

performance is also associated with using a single MPI

process that spawns at least 68 OpenMP threads. In

Figure 10, we further study the effect of using more than

one thread per core. It shows that the best single-node

PDE performance is associated with using one MPI

process that spawns in total 272 OpenMP threads.

Figure 10 Single-node PDE performance with respect to

OpenMP threads per core

(4) Multi-node strong scaling study

We have also measured the strong scaling results of

running a parallel simulation (ODE+PDE) of cardiac

electrophysiology, which uses a realistic whole-heart

geometry that involves over 14 million computational

cells (each being a tetrahedron). As shown in Figure 11,

up to 256 compute nodes have been used on Oakbridge-

CX, where each node always uses a single MPI process

that spawns 56 OpenMP threads. The performance metric

Joino Usage/Research Cenoer for Inoerdisciplinary Large-scale Informaoion Infrasorucoures

Final Reporo for JHPCN Joino Research of FY 2020

6

used is number of cell steps computed per second. It can

observed a gap between the actual parallel performance

and the perfect scaling, mostly indicating the impact of

MPI communication overhead.

Figure 11 Strong scaling measurements on Oakbridge

(5) Multigrid Method for Impicit Time Integration

The parallel multigrid method is expected to play an

important role in scientific computing on exa-scale

supercomputer systems for solving large-scale linear

equations with sparse coefficient matrices. Because

solving sparse linear systems is a very memory-bound

process, efficient method for storage of coefficient

matrices is a crucial issue. Nakajima et al. implemented

sliced ELL method to parallel conjugate gradient solvers

with multigrid preconditioning (MGCG) for the

application on 3D groundwater flow through

heterogeneous porous media (pGW3D-FVM), and

excellent performance has been obtained on large-scale

multicore/manycore clusters [Nakajima, K., IEEE

ICPADS 2014, 2014]. In the present work, we introduced

SELL-C- with double/single precision computing to the

MGCG solver, and evaluated the performance of the

solver with OpenMP/MPI hybrid parallel programing

models on the Oakforest-PACS (OFP) system using up to

2,048 nodes of Intel Xeon Phi. Because SELL-C- is

suitable for wide-SIMD architecture, such as Xeon Phi,

improvement of the performance over the sliced ELL was

more than 35% for double precision and more than 45%

for single precision on OFP.

(a) (b) (c) (d)

Figure 12 Formats of sparse matrix storage. (a) Compressed

row storage (CRS); (b) Ellpack-Itpack (ELL), (c) Sliced ELL,

(d) SELL-C- (SELL-2-8)

(a)

(b)

Figure 13 Elapsed Computation Time for MGCG Solver: 8 nodes

of OFP (HB 416), 33,554,432 DOF, (a) Double Precision

(FP64), (b) Single Precision (FP32)

Figure 13(a) and Figure 13(b) show computation

time of MGCG for HB 416 with 8 nodes of OFP, where

total problem size is 33,554,432 DOF. Computation time

of MGCG for HB 416 with 8 nodes of OFP. Each of Lev.h

(h=1 (finest level)~4 (coarser level)) shows total time for

smoothing at the h-th level of multigrid computing, while

Rest includes time for communications, coarse grid solver

and conjugate gradient solver except multigrid. SELL-8-8

C

s

0.00

1.00

2.00

3.00

4.00

5.00

6.00

CRS ELL SCS-a:

C=8

SCS-b:

C=8

SCS-b:

C=128

s
e
c
.

Lev.1 Lev.2 Lev.3 Lev.4 Rest

0.00

1.00

2.00

3.00

4.00

5.00

6.00

CRS ELL SCS-a:

C=8

SCS-b:

C=8

SCS-b:

C=128

s
e
c
.

Lev.1 Lev.2 Lev.3 Lev.4 Rest

Joino Usage/Research Cenoer for Inoerdisciplinary Large-scale Informaoion Infrasorucoures

Final Reporo for JHPCN Joino Research of FY 2020

7

and SELL-128-128 are applied to SCS-b. Improvement of

performance of MGCG solver over CRS is shown in Table

1. Generally, improvement of performance by SCS-b is

excellent, and the effects are more significant in FP32

cases. Generally, performance improvement by single

precision for CRS is lower compared to Sliced ELL and

SELL-C-.

Table 1. Summary of Results in Fig.9 for OFP

a. Improvement over CRS (MGCG solver, Level-1 of Smoother)

b. Improvement over Sliced ELL (MGCG solver, Level-1 of

Smoother)

Performance of weak scaling has been evaluated using

up to 2,048 nodes of OFP (131,072 cores). Maximum

problem size is 8,589,934,592 DOF. Figure 14 shows

results of weak scaling up to 2,048 nodes of OFP using HB

416, where “-d” denotes double precision (FP64), and “-

s” is for single precision (FP32).

Figure 14 Elapsed Computation Time for MGCG Solver, Weak

Scaling up to 2,048 nodes, Max. Problem Size: 8,589,934,592

DOF, HB 416, “-d”: Double Precision (FP64), “-s”: Single

Precision (FP32)

Figure 15 compares double precision (FP64) and single

precision (FP32) for both of SCS-b (C==8) and SCS-b

(C= =128) with HB 416. In both of double precision and

single precision, performance of SCS-b (C==8) and SCS-

b (C= =128) is competitive, but SCS-b (C= =128) is

slightly faster for single precision.

Figure 15 Elapsed Computation Time for MGCG Solver, Weak

Scaling up to 2,048 nodes, Max. Problem Size: 8,589,934,592

DOF, HB 416, “-d”: Double Precision (FP64), “-s”: Single

Precision (FP32)

Figure 16 compares HB 416 and HB 88 for SCS-b

(C= =8) with double precision and for SCS-b (C==128)

with single precision. Generally speaking, HB 416 is

faster than HB 88, but performance is similar at 1,024 and

2,048 nodes. Problem of CGA (Coarse Grid Aggregation)

adopted in this work (Figure 17) is that the coarse grid

solver works on a single MPI process and, problem size of

the coarse grid solver is proportional to total number of

MPI processes. Therefore, cost of the coarse grid solver is

more significant with many nodes. Moreover, this effect is

more significant, if number of threads for each MPI

process is smaller, such as HB 416 in this work.









Figure 16 Elapsed Computation Time for MGCG Solver, Weak

Scaling up to 2,048 nodes, Max. Problem Size: 8,589,934,592

DOF, Comparison of HB 416 and HB 88, “-d”: Double

Precision (FP64), SCS-b (C==8), “-s”: Single Precision

(FP32), SCS-b (C==128)

Double Precision
(FP64)

Single Precision
(FP32)

Sliced ELL 36.6%, 46.6% 15.6%, 44.7%

SCS-a (C==8) 79.4%, 101.3% 58.7%, 81.0%

SCS-b (C==8) 84.9%, 108.7% 90.9 %, 152.2%

SCS-b (C==128) 90.1%, 107.8% 137.5%, 174.9%

Double Precision
(FP64)

Single Precision
(FP32)

SCS-a (C==8) 31.4%, 39.2% 20.3%, 25.1%

SCS-b (C==8) 35.4%, 44.4% 49.6%, 74.3%

SCS-b (C==128) 39.2%, 46.4% 59.4%, 89.9%

0.00

2.00

4.00

6.00

8.00

10.00

1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06

s
e
c
.

Core #

CRS-d
ELL-d
SCS-a(C=8)-d
SCS-b(C=8)-d
SCS-b(C=128)-d
SCS-b(C=128)-s

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06

s
e
c
.

Core #

SCS-b(C=8)-d

SCS-b(C=128)-d

SCS-b(C=8)-s

SCS-b(C=128)-s

1.00

2.00

3.00

4.00

5.00

1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06

s
e
c
.

Core #

HB 4x16-d

HB 4x16-s

HB 8x8-d

HB 8x8-s

Joino Usage/Research Cenoer for Inoerdisciplinary Large-scale Informaoion Infrasorucoures

Final Reporo for JHPCN Joino Research of FY 2020

8

Figure 17 Procedures of coarse grid aggregation (CGA), where

information of each MPI process is gathered in a single MPI

process for computation at level=m-2 [14]

6. Progress during FY2020 and Future

Prospects

Following the original 2-year project plan, we have

carried out two activities in FY2020: (1) Single-node

optimization of an explicit-method based simulator; (2)

Scale-out optimization of the explicit-method based

simulator, and (3) Preliminary Works on Mulgirgrid

Solver. In (1) and (2), we have achieved close-to-

maximum single-node performance, thanks to SIMD

vectorization of the ODE computation and an effective

OpenMP+MPI parallelization of the PDE computation.

The multi-node scale-out optimization has had a good

start, but will require more detailed profiling to identify

potential optimization opportunities. This activity (1) and

(2) will be continued in FY2021, while we will also carry

out the other two planned research activities: (4)

Development of a new, implicit-method based simulator

(based on (3) in FY.2020); (5) Large-scale, realistic

simulations of cardiac electrophysiology.

7. List of Publications and Presentations

[1] Journal Papers (Refereed)

[1] K.H. Jæger, K.G. Hustad (+), X. Cai (+), A. Tveito.

Efficient numerical solution of the EMI model

representing the extracellular space (E), cell

membrane (M) and intracellular space (I) of a

collection of cardiac cells. Frontiers in Physics, 8:

579461, 2021, DOI: 10.3389/fphy.2020.579461

[2] Proceedings of International Conferences

(Refereed)

[2] K.H. Jæger, K.G. Hustad, X. Cai, A. Tveito.

Operator Splitting and Finite Difference Schemes

for Solving the EMI Model. Book chapter in

“Modeling Excitable Tissue: The EMI Framework”,

pages 44-55, 2021, Springer, DOI: 10.1007/978-3-

030-61157-6_4

[3] K.G. Hustad, X. Cai, J. Langguth, H. Arevalo,

Efficient simulations of patient-specific electrical

heart activity on the DGX-2. Poster presented at the

GTC-2020 Conference.

[4] J. Langguth, N. Gaur, H. Arevalo, C. Jarvis, N.

Altanaite, Q. Lan, X. Cai. Towards detailed Organ-

Scale Simulations in Cardiac Electrophysiology.

Poster presented at the GTC-2020 Conference.

[5] Nakajima, K., Gerofi, B., Ishikawa, Y., Horikoshi,

M., Efficient Parallel Multigrid Solver on Intel Xeon

Phi Cluster, IXPUG (Intel Extreme Performance

Users Group) HPC Asia 2021, 2021

[6] Nakajima, K., Ogita, T., Kawai, M., Efficient Parallel

Multigrid Methods on Manycore Clusters with

Double/Single Precision Computing, IEEE

Proceedings of the 16th International Workshop on

Automatic Performance Tuning (iWAPT 2021) in

conjunction with 35th IEEE International Parallel

and Distributed Processing Symposium (IPDPS

2021), 2021（in press）

[3] International conference Papers (Non-

refereed)

[4] Presentations at domestic conference (Non-

refereed)

[5] Published library and relating data

[6] Other (patents, press releases, books and so

on)

Level=1

Level=2

Level=m-3

Fine

Coarse

• Communication overhead

could be reduced

• Coarse grid solver is more

expensive than original

approach.

• If process number is larger,

this effect might be

significant

Level=m-2

Coarse grid solver on

a single MPI Process

(multi-threaded,

further MG)

