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Abstract

Hierarchical low-rank approximation of dense matrices can reduce the complexity of matrix
multiplication and factorization from O(N3) to O(N) while trading accuracy for speed.
Modern processors are equipped with low-precision arithmetic, which yield much higher
throughput if low accuracy can be tolerated. On such processors, performing exact O(N3)
dense linear algebra operations through the use of LAPACK and BLAS libraries is a waste of
Flops. Our goal is to replace these exact dense linear algebra libraries with our hierarchical
low-rank approximation library. The functions needed for this are the capability to perform
LU and QR factorization on GPUs and distributed memory. For FY 2020 we focused on
the following critical steps to achieving this goal; Use of uniform basis as a nested basis
block low-rank (BLR) matrix, QR factorization on TensorCores with refinement, Eigenvalue
computation based on BLR-QR, GPU implementation of lattice H-matrix.

1 Basic Information

1.1 Collaborating JHPCN Centers
The University of Tokyo
Information Technology Center

Tokyo Institute of Technology
Global Scientific Information and Computing
Center

Hokkaido University
Information Initiative Center

Kyoto University
Academic Center for Computing and Media
Studies

Nagoya University
Information Technology Center
1.2 Research Areas
- Very large-scale numerical computation

1.3 Roles of Project Members
Rio Yokota (Tokyo Institute of Technology)
Low-rank approximation using FMM and its
GPU-MPI implementation

Ichitaro Yamazaki (Sandia National Labo-
ratories) Development of distributed memory
runtime ParSEC, and blocked BLAS library
for GPU

Akihiro Ida (University of Tokyo) Feature
extension of hybrid MPI/OpenMP H-matrix
code HACApK, and its integration with Par-
SEC and block MAGMA

Takeshi Iwashita (Hokkaido University)
Application of HACApK to boundary inte-
gral solvers for electromagnetics, and opti-
mization of H-matrix-vector product

Takeshi Fukaya (Hokkaido University) De-
velopment of QR decomposition on Tensor-
Cores for low-rank approximation
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Satoshi Oshima (Nagoya University) GPU
implementation of HACApK and integration
with MAGMA

Kengo Nakajima (University of Tokyo)
Extend capability of HACApK within the
ppOpen-HPC framework

Toshihiro Hanawa (University of Tokyo)
Support for code optimization using FPGA,
MPI, GPU

Tetsuya Hoshino (University of Tokyo)
Optimization of batched operations on GPU

Tasuku Hiraishi (Kyoto University) Dy-
namic load-balancing of HACApK

Kazuki Osawa (Tokyo Institute of Technol-
ogy) Generation of Hessian, Fisher, Covari-
ance matrices

Hiroki Naganuma (Tokyo Institute of
Technology) Experiments for deep learning
optimization

Hiroyuki Ootomo (Tokyo Institute of
Technology) Optimization of TensorCore im-
plementation

Shun Iwase (Tokyo Institute of Technology)
Visualization of results using 3-D rendering

Sameer Deshmukh (Tokyo Institute of
Technology) Optimization of batched low-
rank kernels on CPU

Peter Spalthoff (Tokyo Institute of Tech-
nology) Development of nested-bases, main
developer of HiCMA code

Muhammad Ridwan Apriansyah
Budikafa (Tokyo Institute of Technology)
QR decomposition using BLR structure

Qianxiang Ma (Tokyo Institute of Technol-
ogy) GPU implementation of H2-matrix

Yuichiro Ueno (Tokyo Institute of Technol-
ogy) Development of hierarchical AllReduce
over NCCL

Hikaru Nakata (Tokyo Institute of Tech-
nology) Application to continual learning

Linsho Kaku (Tokyo Institute of Technol-
ogy) Application to few-shot learning

Thomas Spendlhofer (Tokyo Institute of
Technology) Development of novel low-rank
compression schemes

Mikiya Shibuya (Tokyo Institute of Tech-
nology) Visualization of results using 3-D
rendering

Takahiro Shohata (Tokyo Institute of
Technology) Application to stochastic weight
averaging

Hana Hoshino (Tokyo Institute of Technol-
ogy) Generation of Hessian, Fisher, Covari-
ance matrices

Aoyu Li (Tokyo Institute of Technology)
Application to non-uniform sampling meth-
ods

Takumi Ito (Tokyo Institute of Technol-
ogy) Generation of Hessian, Fisher, Covari-
ance matrices

Sora Takashima (Tokyo Institute of Tech-
nology) Application to eigenvalue based gen-
eralization metrics

Xinyu Zhang (Tokyo Institute of Technol-
ogy) Application to large language models

2 Purpose and significance of

Research

The purpose of this research is to develop
a scalable and highly optimized open source
library for hierarchical low-rank approxima-
tion of dense matrices. Such large dense ma-



Final Report for JHPCN Joint Research of FY 2020 3

trices naturally appear in electromagnetic,
seismic, quantum, and fluid simulations, in
scientific computing. Large dense matrices
also appear in machine learning, where the
Hessian, Fisher, Covariance, and Gram ma-
trices play an important role in determin-
ing the properties of optimization and gen-
eralization of deep neural networks. Un-
like their dense counterparts which require
O(N3) time and O(N2) memory, H-matrices
can perform matrix multiplication and fac-
torization in O(N) time and O(N) memory,
have controllable arithmetic intensity, have
asynchronous communication, and can ex-
ploit deep memory hierarchy.

During the previous JHPCN project we
have extended the H-matrix code to perform
not only matrix-vector multiplications, but
also matrix-matrix multiplication, LU factor-
ization, and QR factorization. We have also
extended the parallelization to support not
only OpenMP and MPI, but also batched
GPU kernels and task-based parallelization.
We experimented with runtime systems such
as OmpSs, StarPU, but found that the over-
head was too large so we designed our own
light-weight task scheduler. Another achieve-
ment is the lattice H-matrix method, which
combines the scalability of block-low-rank
methods with the favorable arithmetic com-
plexity of H-matrices. The present JHPCN
project extends our previous work in the di-
rection of better scalability, higher GPU uti-
lization, and better accuracy control. We
also plan to experiment with matrices that
arise in deep learning applications, though it
is possible that such matrices may not have
hierarchical low-rank structure.

3 Significance as JHPCN Joint

Research Project

Hardware architecture is now moving to-
wards low-precision arithmetic, backed by
the increasing demand from the machine
learning field. When such low-accuracy can
be tolerated, exact dense linear algebra op-
erations become unnecessary, and libraries
such as BLAS and LAPACK, which are at

the heart of HPC applications, can be re-
placed by hierarchical low-rank (H-matrix)
libraries that effectively do the same work in
linear time. Due to the increasing diversity in
hardware, it is becoming increasingly difficult
to maintain a single codebase that achieves
performance portability across all these dif-
ferent architectures. Our aim is to develop
a H-matrix library that can achieve perfor-
mance portability across the different JH-
PCN centers. Therefore, collaboration with
multiple JHPCN centers is essential.

4 Outline of Research Achievements

up to FY2019

Up to FY2019 we have tackled various
problems regarding hierarchical low-rank ap-
proximation and its parallel implementation.
There are various derivatives of hierarchi-
cal low-rank approximation methods such
as; BLR, HODLR, HSS, H-matrix, and H2-
matrix. We started from the most basic
variant – BLR, which uses low-rank off-
diagonal blocks, but not a hierarchical ma-
trix. We started with the most basic op-
erations such as matrix-vector and matrix-
matrix multiplication. This was extended
during FY2016 to LU factorization and im-
plemented in OpenMP and MPI. In FY2017,
we extended the matrix format to more
complex HSS and H-matrix structures, and
extended the implementation to GPUs for
the matrix-vector multiplication. We uti-
lized batched MAGMA operations to process
the matrix-vector multiplication efficiently
on GPUs. In FY2018, we further extended
the implementation of the LU factorization
to multiple-GPUs using a hybrid MPI +
OpenMP + CUDA code. In FY 2019 we ex-
tended the H-matrix code to H2-matrix by
using a nested basis. We also used a run-
time for H-LU on GPU, but found that such
runtimes like StarPU and OmpSs incur too
much overhead. For the inner kernels, we
ported the QR decomposition to run on Ten-
sorCores. Finally, we implemented the QR
decomposition using the BLR matrix.
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5 Details of FY2020 Research

Achievements

The four main goals for the fiscal year 2020
were

1. Use of uniform basis as a nested basis
block low-rank (BLR) matrix (FY2020
1Q)

2. QR factorization on TensorCores with
refinement (FY2020 2Q)

3. Eigenvalue computation based on BLR-
QR (FY2020 3Q)

4. GPU implementation of lattice H-matrix
(FY2020 4Q)

We give the details of each goal along with
the details of the achievements here.
5.1 Use of uniform basis as a nested basis

block low-rank (BLR) matrix (FY2020
1Q)

5.1.1 Research plan
In order to understand the significance of the
present research plan, it is necessary to un-
derstand the subtle differences between the
low-rank matrix structures shown in Fig. 1.
The block low-rank (BLR) matrix shown in
(a) is not-hierarchical and does not have a
uniform basis. It is possible to have a uni-
form basis in BLR as shown in (b), though
this has never been used in existing related
work. The H-matrix shown in (c), has a
hierarchical structure, but does not have a
uniform basis. It is also called an hierar-
chical off-diagonal low-rank (HODLR) ma-
trix when the off-diagonal blocks are not
subdivided further, as shown in (c). The
H2-matrix shown in (d), has a hierarchical
structure, and has a uniform basis, which
is nested within a hierarchical structure for
the basis. It is also called a hierarchically
semi-separable (HSS) matrix when the off-
diagonal blocks are not subdivided further,
as shown in (d).

HACApK uses a non-nested H-matrix, and
requires each block to store a long basis ma-
trix. Since these basis matrices must be com-
municated during a distributed LU factoriza-
tion, this results in a significant amount of

communication. For a nested basis formula-
tion, only the small translation matrix needs
to be stored for each block. This reduces
the amount of communication significantly.
One disadvantage of the nested basis formu-
lation is that it requires extra bookkeeping
for the binary tree structure of the nested ba-
sis. Therefore, in FY2020 we plan to develop
a simpler version of the nested basis called
the uniform basis. The uniform basis does
not use a hierarchical structure, and can be
thought of as a nested basis equivalent for the
(BLR) matrix. Since there is no hierarchical
structure, the bookkeeping of the binary tree
is unnecessary for the uniform basis.
5.1.2 Achievements
We have successfully implemented the uni-
form basis BLR during 1Q of FY2020. This
is not only an important incremental step to-
wards developing a nested basis H2-matrix
with superior scalability and complexity, but
also a novel matrix structure that has both
the parallel scalability of BLR and the low
memory usage of the uniform basis. As far
we know, this is the first implementation of
such a structure, and we are preparing a sub-
mission to ACM TOMS based on the novel
findings. A comparison of the LU factoriza-
tion time between a dense matrix, BLR ma-
trix, and BLR matrix with uniform basis is
shown in Fig. 2. We can see that the LU fac-
torization of BLR matrix is of course faster
than that of a dense matrix. We also see that
the BLR with uniform basis is much faster
than the original BLR, and the complexity
with respect to N is much better. The accu-
racy of the low-rank approximation is set to
10−10 for both the BLR and BLR(uniform),
so the BLR can be even faster if less accuracy
is required. Even for this high accuracy case,
the BLR(uniform) can compute the LU fac-
torization of a originally dense matrix of size
N = 32, 768 on a single CPU in about 1 sec-
ond, which is over 100 times faster than the
dense LU. This is speed up is partially due
to the performance optimization of the in-
ner kernels, which are now twice as fast com-
pared to batched MKL [2].
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(a) BLR (b) BLR (uniform basis) (c) H-matrix/HODLR (d) H2-matrix/HSS

Fig. 1: Illustration of the different low-rank structured matrices. Blocks with the same color
share the basis.

Fig. 2: Comparison of LU factorization time
between a dense matrix, BLR matrix, and
BLR matrix with uniform basis. The accu-
racy of the low-rank approximation is set to
10−10 for both the BLR and BLR(uniform).

5.2 QR factorization on TensorCores with re-
finement (FY2020 2Q)

5.2.1 Research plan
In order to achieve our goal for FY2019 of de-
veloping a highly optimized batched random-
ized SVD, we first developed a tall-skinny QR
(TSQR) using TensorCores. Unlike many ap-
plications of the QR factorization, we use
the QR factorization to perform the low-
rank approximation, which does not require
very high accuracy anyway. Therefore, we
can tolerate the errors from the low-precision
arithmetic up to a certain point. Random-
ized SVD makes use of the TSQR, so we
are basically optimizing the TSQR operation.

Therefore, our focus will be to extend the
TSQR on TensorCores, to achieve higher ac-
curacy. Our experiments in FY2019 showed
that the use of TensorCores increased the
residual error and orthogonality of the QR
factorization to 10−2, which is equivalent to
using FP16. TensorCores perform the mul-
tiplication in FP16 but the accumulation is
done with FP32. However, the conversion to
FP16 for the input is what increases the er-
ror, and it does not matter that the accumu-
lation is done with FP32. Therefore, we will
develop a refinement method that stores the
residuals of the FP16 operations in an aux-
iliary FP16 variable. This will allow us to
still benefit from the speed of TensorCores,
while retaining the accuracy of FP32 compu-
tations. Since the applications we are tar-
geting can tolerate FP32 accuracy, this will
make our TSQR on TensorCores usable in
our final application.
5.2.2 Achievements
The use of floating point numbers with fewer
bits such as single precision (FP32) and
half precision (FP16) can cause the follow-
ing problems.

• Roundoff error – where the least signifi-
cant digits of the Mantissa are truncated

• Cancelation of significant digits – where
the subtraction of two large numbers re-
sults in a cancellation of significant digits

• Loss of trailing digits – when a small
number is added to a large number the
trailing digits are lost
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Fig. 3: Error of TSQR when using FP16

• Overflow/underflow of the exponent –
when the value becomes too large/small

When performing operations on the Tensor-
Core, the input matrix is converted to FP16.

This causes roundoff error to the elements
of the input matrix, and could also result in
overflow/underflow if the value falls outside
of the dynamic range supported by FP16.
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As shown in Fig.3, TSQR performs a se-
quence of QR factorizations recursively. As
the QR factorization is performed recur-
sively, the dynamic range of the matrix el-
ements changes. When the dynamic range
crosses the boarder of the FP16 minimum,
this results in a gradual underflow as defined
by the subnormal numbers in IEEE754. This
does not immediately produce the wrong re-
sult, but could cause the degradation of accu-
racy for the residual and orthogonality of the
QR decomposition. It was also observed that
certain parts of the matrix are more prone to
underflow than other parts of the matrix.

The residual, orthogonality, computation
time, and memory usage of the TSQR on
TensorCores is shown in Fig. 4. “TC-noCor”
is the TensorCore with no error correction,
“TC-Cor” is the TensorCore with error cor-
rection, “noTC” is without TensorCore using
FP32, and “cuSOLVER” is cuSOLVER using
FP32. We see that the use of TensorCores
without error correction results in a residual
of 10−1 (about 10% error). With error cor-
rection, this can be reduced to 10−3. This is
only slightly worse than the case where the
computation is done in FP32 without Ten-
sorCores, which has a residual of approxi-
mately 10−4. cuSOLVER using FP32 has
even better accuracy due to the different al-
gorithm it uses. The orthogonality shows
a similar trend. With respect to the com-
putation time, we see that our implemen-
tation on TensorCores with error correction,
is always faster than the FP32 computation
without TensorCores. It is also faster than
cuSOLVER when the matrix size is large
enough. We also see that the memory con-
sumption of cuSOLVER is larger than the
other methods. These results were presented
at ISC’20 [4].
5.3 Eigenvalue computation based on BLR-

QR (FY2020 3Q)
5.3.1 Research plan
In FY2019 we have developed a QR factor-
ization based on the BLR structure, but this
alone could not be used in any application.
In FY2020 we plan to use our BLR-QR in-
side a QR method to compute Eigenvalues.

This will allow us to reduce the computa-
tional complexity of Eigenvalues of a dense
matrix from O(N3) to O(N3/2). The origi-
nal version of the BLR-QR in HACApK was
based on the modified Gram-Schmidt algo-
rithm and had poor orthogonality. This can
be improved by performing another orthog-
onalization. We also plan to develop an al-
ternative BLR-QR that uses the Householder
projection, and is based on the tile-QR algo-
rithm [1].
5.3.2 Achievements
In the 3Q of FY2020, we used the BLR-
QR for the eigenvalue computation of a
dense matrix arising from a electromagnetic
scattering problem using a surface charge
method. We used a BLR structure for the
matrix and performed a BLR-QR using the
technique developed in FY2019. The BLR
matrix uses a weak admissibility where only
the diagonal blocks are dense and all off-
diagonal blocks are compressed to a low-rank
matrix. The block size of the BLR matrix
was set to O(N0.5), since this is known to
yield optimal complexity. The QR decompo-
sition uses a modified block Gram Schmidt
method. Then, this QR decomposition is
used inside a QR method to obtain the eigen-
values, where the following iteration is per-
formed until convergence

Qn, Rn = QR(An) (1)

An+1 = Rn ∗Qn (2)

We measured the maximum relative norm
of the difference between the approximated
eigenvalue en and the exact eigenvalue eexact
from the following equation

max((en(i)− eexact(i))/eexact(i)) (3)

We also shift the eigenvalues to avoid insta-
bility by subtracting I ∗ An(N,N) from An.
The maximum relative norm error is shown
in Fig. 5. We observe that the error drops
initially but reaches a stagnation point. This
is caused by the approximation error in the
BLR-QR computation.
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Fig. 4: Residual, orthogonality, time, and memory of randomized SVD on TensorCores.

Fig. 5: Maximum relative norm error of
eigenvalues during QR method iteration.

5.4 GPU implementation of lattice H-matrix
(FY2020 4Q)

5.4.1 Research plan
In FY2019 we have shown that combining the
scalability of the BLR matrix with the com-

putational complexity of the H-matrix results
in a scalable method that has O(Nlog2N)
complexity for LU factorization, which we
named “lattice H-matrix”. Although this
method was implemented as an extension of
HACApK, which has a GPU implementation
for matrix-vector multiplications, the lattice
H-matriix was done in a separate branch of
the code, so it does not have a GPU imple-
mentation. In FY2020 we plan to extend the
lattice H-matrix to include the GPU imple-
mentation.
5.4.2 Achievements
The lattice H-matrix is working on the CPU
and the plain H-matrix is working on GPUs.
The lattice H-matrix has been implemented,
but it is still going through a debugging
phase. There are still some cases where it
returns a larger error than expected.
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6 Progress during FY2020 and Future

Prospects

6.1 Use of uniform basis as a nested basis
block low-rank (BLR) matrix (FY2020
1Q)

For the uniform basis BLR work, we achieved
the original research objectives. The shared
basis BLR is a simple but novel structure
that has a good balance between the arith-
metic complexity and the amount of paral-
lelism. Using this shared basis BLR struc-
ture, we were able to achieve over 100 times
speed up for a LU decomposition compared
to the dense LU in MKL for a matrix size of
N=32,768 (as shown in Fig. 2).
6.2 QR factorization on TensorCores with re-

finement (FY2020 2Q)
For the QR factorization on TensorCores, we
achieved the original research objectives. We
extended our work on error corrected matrix
multiplication on TensorCores. Careful con-
sideration of the dynamic range of the matrix
elements allowed us to achieve much higher
accuracy than any other implementation of
QR decomposition on TensorCores.
6.3 Eigenvalue computation based on BLR-

QR (FY2020 3Q)
For the eigenvalue computation using BLR-
QR, we were able to achieve our original re-
search objectives. We have shown that the
BLR-QR method can be used along with
the QR method to obtain eigenvalues. This
is the first work to demonstrate an eigen-
value solver using the BLR matrix, which has
O(N2) complexity instead of O(N3).
6.4 GPU implementation of lattice H-matrix

(FY2020 4Q)
For the GPU implementation of lattice H-
matrix, we were not able to achieve our orig-
inal research objective. The implementation
has been completed, but there remains some
unexplained behavior in the code, which is
causing a large error in the solution. We
believe this can be resolved in time by con-
structing unit tests for each component and
checking their validity.

7 List of Publications and

Presentations

7.1 Journal Papers
1. M. R. Aripansyah, R. Yokota, QR De-

composition of Block Low-Rank Matri-
ces, ACM Transactions on Mathematical
Software (in preparation).

7.2 Conference Papers
2. S. Deshmukh, R. Yokota, G. Bosilca, Ef-

ficient Batched Low Rank Matrix Multi-
plication Using Register Blocking, ACM
Transactions on Mathematical Software
(in preparation).

7.3 Oral/Poster Presentations
3. S. Deshmukh and R Yokota. Distributed

Memory Task-Based Block Low Rank
Direct Solver, ISC High Performance
2020 (Research Poster), June, 2020.

4. H. Ootomo, R. Yokota, Randomized
SVD on TensorCores, ISC High Perfor-
mance 2020, (Research Poster), June,
2020.


