jh190075-NAH

大規模並列地震波シミュレーションに基づく南西諸島における 地震発生メカニズムの高精度解析

竹中 博士 (岡山大学)

概要 本課題研究では我々が開発した大規模時間領域差分法(HOT-FDM)に よる地震波シミュレーション結果を用いて、南西諸島域において地震発生メカ ニズムを精密に推定し、地震発生場の状況を検討することを目的とした。この 目的に従って次の研究を進めた。[1] 南西諸島地域の地震波シミュレーション (§5.1) 先島諸島域および沖縄本島沖の領域について、名古屋大学 FX-100 の 288-432 ノードを利用した大規模計算を行い、グリーンテンソル波形を生成し た。[2] 南西諸島地域の地震の FAMT 解析 (§5.2) 上記の結果を用いて、FAMT 解析による地震パラメータ推定を行った。その結果、複数の横ずれ型地震が海 洋マントル内で発生したという暫定的な結果が見出された。これは海洋マント ルの強度や応力状態に関して興味深い結果であるが、今後詳しく検討する必要 がある。[3] 南西諸島全域の球殻構造におけるシミュレーション(§5.3) 南西 諸島全域を対象にして、地球の曲率の影響を考慮した quasi-Cartesian 座標を 用いた大規模計算を実施した。その結果 300km を越える遠方では後続波形を再 現できない場合があり、構造モデルの更なる改良の必要性が示唆された。[4]感 度カーネルの計算(§5.4)現状の構造モデルを改良するために必要となる感度 カーネルの計算を東工大 TSUBAME によって実施し、感度カーネルの空間パ ターンについて検討を行った。

1. 共同研究に関する情報

(1) 共同研究を実施した拠点名

東京工業大学 学術国際情報センター 名古屋大学 情報基盤センター

(2) 共同研究分野

超大規模数值計算系応用分野

岡山大学・大学院自 然科学研究科・竹中 博士	研究代表者・全テーマ の統括
東京工業大学・学術 国際情報センター・ 青木尊之	副代表者・GPU 計算の最 適化、大規模並列化・ 計算結果の可視化への 助言
東京工業大学・理学 院・岡元太郎	副代表者・TSUBAME での GPU版プログラムによる 計算・連絡責任者
防災科学技術研究 所・地震津波防災研 究部門・中村武史	共同研究者・FX100 での CPU 版地震波プログラム の開発

(3) 参加研究者の役割分担

東北大学・地震・噴	共同研究者・CPU 版地震
火予知研究観測セン	波プログラムを用いた
ター・豊國源知	FX100 での計算
岡山大学・大学院自	CPU 版地震波プログラム
然科学研究科・小松	を用いた FX100 での計
正直	算

2. 研究の目的と意義

沈み込み帯に位置する日本列島では、2011 年東北地方太平洋沖地震のような海溝でのプ レート境界型地震について地震発生確率が評 価されている。ところが、フィリピン海プレー トが沈み込む九州から沖縄にかけての南西諸 島域では、過去の地震データが充分ではないた めに巨大地震発生の確率を評価すること自体 が困難となっている(地震調査本部 2018 年)。 しかしこの地域でも津波石や古文書などの調 査から、大津波(例えば先島諸島での 1771 年 明和大津波)を引き起こすような大地震が発生 してきたことが推定されている。また海溝型巨 大地震の発生に関わると考えられている「短期 的スロー・スリップ」も南西諸島域では多数発 生しており、地震予測の立場からも近年注目さ れている。このように過去の地震データが少な い南西諸島地域では、現代の地震観測データに 基づいて地震発生場の状況を検討することが 重要な課題であると考えられる。

そこで本研究では、地震波データを用いて 南西諸島域の多くの地震について地震発生メ カニズムを精密に推定し、地震発生場の状況を 検討することを目的とする。そのために、これ まで我々が開発してきた大規模並列時間領域 差分法(Finite Difference Time Domain: FDTD) による地震波シミュレーションを利用する。ま た地震発生位置とそのメカニズムの推定では、 我 々 が 提 案 し た First-motion Augmented Moment Tensor (FAMT) 解析手法 [文献 1, 2] による高精度化を目指す。

3. 当拠点公募型研究として実施した意義

本研究では地震波波形データ解析のために 理論計算波形 (グリーン関数)を必要とする。そ の計算においては、陸上地形・海底地形・海水 層・3次元不均質性を全て含む陸海統合3次元 構造モデルのもとで波形を生成する必要がある。 なぜなら、これらの不均質構造によって地震波 の伝播経路等が大きく歪められ、また散乱等が 発生することにより、深さ方向のみに媒質が変 化する標準的な1次元構造モデルの場合とは大 きく異なる計算波形になるためである。本研究 では周期数秒程度から数十秒程度の広帯域の地 震波データを利用する。この際、周期数秒程度の 短波長の波動を正確に表現するためには格子間 隔を 100 m~200m 程度に設定する必要がある。 一方、南西諸島域を扱うには最大で 1000 km× 500 km×200 km 程度の広い計算領域を確保しな ければならない。そのため 100 億格子点程度、 またはそれ以上の格子点からなる大規模な計算 領域を扱うことになる。このような大規模計算 のために、名古屋大学の FX-100 や東京工業大学

の TSUBAME が必要となることから利用させ ていただいた。FX-100 では最大で 432 ノード、 TSUBAME では 32 個の GPU を用いた計算を 実施した。

4. 前年度までに得られた研究成果の概要 本研究は新規課題なので該当しない。

5. 今年度の研究成果の詳細

5.1 南西諸島地域の地震波シミュレーション

南西諸島域への FAMT 解析の適用性を検討す るためのテストケースとして、今年度前半は2018 年3月1日22時46分に先島諸島域で発生した深 さ15 km、気象庁マグニチュード 5.6 の地震を対 象として解析を行った。FAMT 解析で用いる格子 探索領域を図1に示す。観測点は防災科研の強震 観測網(K-NET)の3観測点(OKN009、OKN010、 OKN011)である。西表島を含む南北方向、東西方 向、鉛直方向に各 2 km 間隔でセントロイド震源 の候補点 5733 点を設定した(図 1)。そして、こ の領域を含む大領域(250×350×60 km)を対象 として、グリーン関数生成のための大規模地震波 シミュレーションを実施した。シミュレーション には我々が開発したスキームによる差分法 (HOT-FDM) [文献 3] を利用した。計算には名古屋大学 情報基盤センターの FX100 を使用し、MPI と OpenMP によるハイブリッド並列計算を行った。 計算は表1に示すように格子間隔100mで16001 時間ステップ行った。1回あたりの計算時間は約 70分である。本テストケースでは、この計算を9 回(9成分)実施した。

今年度後半は沖縄本島近海で発生した複数の 地震を対象に解析を行った。FAMT 解析で用いる 格子探索範囲を図3に示す。グリーン関数の計算 を行った観測点は防災科研 K-NET の8 観測点

(OKN001、OKN002、OKN003、OKN004、
 OKN005、KGS033、KGS034、KGS035)である。
 沖縄本島南東沖に南北方向、東西方向、鉛直方向
 に各 2 km 間隔でセントロイド震源の候補点
 21911 点を設定した(図 2)。そして、この領域を

学際大規模情報基盤共同利用·共同研究拠点 2019 年度共同研究 最終報告書

含む大領域(360×340×80 km)を対象として、 グリーン関数生成のための大規模地震波シミュレ ーションを実施した。計算は表2に示すように格 子間隔100 m で24001時間ステップ行った。1回 あたりの計算時間は約114分である。本テストケ ースでは、この計算を24回(24成分)実施した。 これらの計算では文献[4]の構造モデルを用いた。

格子サイズ	$2501 \times 3501 \times 601$
格子間隔	100 m
時間ステップ数	16001
時間間隔	0.005 s
ノード数	288
プロセス数	576
スレッド数	16
計算時間	4118 s (68.6 m)

表1 HOT-FDM 計算のパラメータ(先島諸島域)

格子サイズ	$3601 \times 3401 \times 801$
格子間隔	100 m
時間ステップ数	24001
時間間隔	0.005 s
ノード数	432
プロセス数	864
スレッド数	16
計算時間	6829 s (113.8 m)

表2 HOT-FDM 計算のパラメータ(沖縄本島沖)

5.2 南西諸島地域の地震の FAMT 解析

まず先島諸島域での FAMT 解析では西表島で 発生した地震において、気象庁 CMT のセントロ イド震源の直上、深さ12kmに正断層成分を含む CMT が推定された(図 1)。FAMT 解析による震 央は F-net CMT 近傍 (F-net の震央は気象庁一元 化震源と同じ:文献[5])で気象庁 CMT と重なる。 気象庁 CMT は7個の広帯域地震計観測点の記録 による周期 40 秒以上の長周期波形、F-net CMT は南西諸島内の離れた3個の広帯域地震計観測点 の記録による周期 20 秒以上の長周期波形を用い てそれぞれ解析されている。一方、本研究の FAMT 解析では震央に近い3つの強震観測点の記録によ る周期 4~50 秒と 8~50 秒の、より短周期を含む 2 つの帯域の波形を使っており、空間分解能は向 上していると考えられる。観測波形と計算波形は、 いずれの観測点においてもよく合っている(図2)。

図 1 先島諸島域での FAMT 解析の格子探索領 域(深さ方向は 2km から 26km まで)と、セント ロイド震源位置・メカニズム。

図2 先島諸島域での観測波形(黒線)と計算波形(赤線)。

さらに、沖縄本島近海で発生した7つの地震に おいて、FAMT 解析を行った。全候補点で解析を 行う前に、気象庁一元化震源の震央における CMT の推定を行った(図3・図4)。沖縄本島沖では最 大8観測点の強震記録を用いて、周期10秒~30 秒の波形を用いた。図5は図3のイベント⑤の観 測波形と FAMT 解析結果に基づく計算波形を示 した。両波形はいずれの観測点においてもよく合 っている。本研究の FAMT 解析で得られた断層メ カニズムは F-net の CMT の結果と概ね一致して いる。ただし、ほとんどのイベントで本研究の方 が断層力源からのずれ(非 DC 成分)の割合が若 干小さく、その点では質が良い。また、イベント ①を除く全てのイベントで、本研究で求まったセ ントロイド震源(以下「震源」と呼ぶ)は F-net の ものよりも深く求まっているように見える。F-net の震源深さも本研究と同様に海水面をゼロとして プロットしているが、F-net で用いられている地 下構造モデルでは海水層が考慮されていないため、 F-net で求められた震源深さは海水面からではな く海底面からと解釈することもでき、F-net の震 源深さ分解能 3 km を考慮すると、深さの絶対値 について両者の差を積極的に議論することはでき ないと考えられる。そこで、ここではイベント間 の相対的な深さに着目する。イベント間の相対的 な深さ分布は、本研究も F-net もよく似ている。 イベント間の深さと断層メカニズムに着目すると、 最も深い 2 つのイベント①と⑥が横ずれ断層

(strike-slip)で、それ以外は逆断層である。本研 究で求まった震源は、イベント①と⑥が地下構造 モデルの海洋マントル、②が海洋地殻とマントル の境界付近、それ以外のイベントが海洋地殻内に 位置している。この海洋マントルが横ずれ断層タ イプの地震が発生しやすい場にあるのかどうか、 たいへん興味深い問題であり、今後の課題である。

図3 沖縄本島沖での FAMT 解析の格子探索領域(深さ 方向は 6km から 40km まで)と、セントロイド震源位置・ メカニズム。メカニズムの下の数字はセントロイド震源 の深さ。各イベントについて左側に FAMT 解析によるメカ ニズム、右側に防災科研の F-net によるメカニズム。

なお今回の解析では、大学院生の小割啓史君に CMT を含む地震パラメータの推定を、渡邉禎貢君 に沖縄近海の地震について観測波形の P 波初動読 み取りを、それぞれ手伝っていただいた。また、 震源の深さだけでなく震央も含めて全候補点を探 索する解析は現在進行中である。

図5 イベント⑤の観測波形(黒線)と計算波形(赤線)。

5.3 南西諸島全域の球殻構造におけるシミュレ ーション

南西諸島は1000km以上の広大な領域のため、 全域を対象にシミュレーションを行う場合は地球 の曲率の影響を考慮しなければならない。本研究 では、球殻構造での計算が可能な quasi-Cartesian 座標における計算スキーム [文献 6]を採用し、南 西諸島を北東南西方向に横断する領域(図 6)にお いてシミュレーションを試みた。対象とするのは 2008 年 7 月 8 日 16 時 42 分に沖縄本島近海で発 生した深さ 53 km (気象庁マグニチュード 6.1) の地震である。計算には名古屋大学情報基盤セン ターの FX100 を使用し、MPI と OpenMP による ハイブリッド並列計算を行った。計算は表 3 に示 すように格子間隔 200 m で 30001 時間ステップ 行った。1回あたりの計算時間は約 130 分である。

格子サイズ	$2201 \times 5501 \times 1001$
格子間隔	$0.002^{\circ} \times 0.002^{\circ} \times 200 \text{ m}$
時間ステップ数	30001
時間間隔	0.01 s
ノード数	432
プロセス数	864
スレッド数	16
計算時間	7766 s (129.4 m)

表3 HOT-FDM 計算のパラメータ

図 6 に示す 8 観測点における計算波形と観測 波形の比較を図 7 に示す。周期 20~50 秒の帯域 において、到達から約 100 秒間で観測波形をよく 再現できている。震央距離 300 kmを超える観測記 録には 200 秒以降に比較的大きな後続波群が見ら れるが、計算波形ではそれが再現されていない。 これは現在使用している広域の地下構造モデルで は海溝に沿って長く広く存在すると考えられる柔 らかい堆積層で覆われた付加体モデルに改良が必 要であることを意味するのかもしれない。これも 今後の課題である。

図6 観測点(緑色の三角)と震央・メカニズム。薄い青 色の範囲が計算領域。

図 7(下の図) 周期 20~50 秒における Radial、 Transverse、UD 成分の観測波形(青線)と計算波形(赤 線)。震央より東側を正、西側を負の距離で表す。振幅 に震央距離を乗じている。

5.4 南西諸島地域の感度カーネル

上記のように今回の解析では、沖縄本島沖では 周期 10 秒以上の地震波を用いた。今後、分解能を 向上させ、短波長現象の解明を目指すには、さら に短周期の波動場にも着目し、構造モデルの改良 も視野に入れる必要がある。そこで本課題では構 造モデルパラメータを改良する逆問題解析(イン バージョン)手法の検討として、感度カーネルの 考察を行う。感度カーネルはモデルパラメータ(構 造モデルの物性値)の摂動 δm(x) に関する波形 の変化量 δu(ω) を示すものである。すなわち周 波数領域でシンボリックに書くと波形の変化量は

 $\delta u(\omega) = \int_{V} K(\mathbf{x}, \omega) \delta m(\mathbf{x}) dV$

なる体積積分で表現される。この積分核 K(x,ω) が(周波数領域での)感度カーネルである。これ は構造モデル改良の際に波動伝播の様子に関する 重要な知見をもたらす。同時に、感度カーネルは 逆問題解析のヤコビアンに相当するものでもある。

図8 感度カーネル計算の対象領域。使用した地震は赤く示 したもので、2001 年 8 月 30 日 Mw5.1 (深さ 24.9km)、2009 年 3 月 22 日 Mw5.1 (深さ 20.0km)、2019 年 4 月 8 日 Mw5.6 (深さ 12.0km)の3つである(深さはいずれも Global CMT 解による)。なお 2000-2019 年の期間の深さ 60km 以浅、Mw5 ~Mw7 の地震の Global CMT 解を全てプロットした。

本課題では、沖縄本島沖の領域(図8)を対象と して波動場のシミュレーションを行い、3つの地 震に関する感度カーネルを生成して検討した。

感度カーネルは、地震の震源からのフォワード 波動場と、観測点に力源を置いたときの相反波動 場を掛け合わせることによって得られる。これら の計算には GPU 対応の HOT-FDM [文献 2, 7] に 基づいて東京工業大学 TSUBAME で実施した 18 回の地震波シミュレーション (表 4)の結果を用い た。構造モデルには文献[8]のものを用いた。また 震源パラメータとしては Global CMT 解を用いた。

格子サイズ	$2176 \times 2944 \times 690$
格子間隔	100 m
時間ステップ数	30000
時間間隔	0.005 s
ノード数	8
GPU 数	32
計算時間	4942 s (平均値)

表4 TSUBAME での計算パラメータ

図 9、図 10 には 2009 年の地震(EV2009 と略 記)から観測点 OKN003 に到達する地震波につい て、P 波に対応する弾性率の感度カーネルと密度 に関する感度カーネルをそれぞれ示す。

図 9 EV2009 から OKN003 に到達する地震波(上下動成 分)について、深さ 5-10km の層における、P 波に対応する 弾性率の規格化した感度カーネル。上側は周期 12.0 秒、下 側は周期 7.6 秒。

この例では地震波は海溝や沖縄本島に対して ほぼ直交する方向に進行する。海溝の地形や構造 モデルは荒い近似では2次元的とみなせることか ら(図4など)、周期12秒程度では観測点と震源 を結ぶ直線経路に関して感度カーネルは対称に近 いパターンを示す。一方で、震源の南東側(琉球 海溝に沿った海側)では感度カーネルの強さが急 変するなど、不均質構造モデルの効果はこの周期 帯でも確認される。より短周期側の周期 7.6 秒で は、この例のような配置でも感度カーネルが直線 経路に関して非対称になるなど複雑さが増してい る。また水深が急激に深くなる海溝に沿った部分 に強いパターンが見られることから、地形と内部 構造が急変している場所で地震波の散乱が起きて いることも示唆される。

図 10 EV2009 から OKN003 に到達する地震波(上下動 成分)について、深さ 5-10km 層における密度の規格化し た感度カーネル。上側は周期 12.0 秒、下側は周期 7.6 秒。

構造モデルを「斜め」に地震波が横切るような 配置では、周期 12 秒程度でも感度カーネルは直線 経路に対して非対称な複雑なパターンを示すこと もわかる(図 11)。このように比較的に近距離(100 ~200km)程度の周期帯でも、南西諸島域の構造 モデルのもとでは波動場は複雑になっている。 §5.2 の比較的に近距離の地震の FAMT 解析では 観測波形と計算波形とが良好に合っていることか ら、10 秒程度の周期帯における複雑な波動場の効 果は表現されていると考えられる。また、今後の 構造モデル改良においては、これらの感度カーネ ルに表されるような波動場の複雑性を取り入れる 必要がある。

6. 今年度の進捗状況と今後の展望

下記の番号は、課題申請書の研究計画の項目番 号に対応する。自己評価は5段階評価とした(数 値が大きいほど良好)。

[1] 南西諸島域での地震波シミュレーション

先島諸島域と沖縄本島沖を対象領域として、多 くの大規模地震波シミュレーションを実施して、 FAMT 解析を実施する上で充分な規模のグリーン テンソル波形を生成した(§5.1)。さらに 1000km にわたる広い領域を対象として地球の曲率を考慮 した地震波シミュレーションも実施し、長距離を 伝播する地震波動場に対して現在の地球内部構造 モデルが改良を必要とすることも示唆された(§ 5.3)。今後は広域地震波動場を詳しく検討するこ とにより、改善が必要とされるモデルの部位に関 する知見を得ていく必要がある。[自己評価 5]

図 11 上図: EV2001 から KGM に到達する地震波(上下 動成分)、下図: EV2019 から ZMM に到達する地震波(上 下動成分)、のそれぞれについて、深さ 5-10km の層にお ける、P 波に対応する弾性率の規格化した感度カーネル (周期は 12.0 秒)。

[2] 南西諸島地域の地震の FAMT 解析

上記で生成したグリーンテンソル波形を用い て先島諸島域および沖縄本島沖の地震に関する FAMT 解析を実施した。いずれの地域でも観測点 に近い(100~200km 程度以内)の地震について、 FAMT 解析で得られた計算波形は周期10秒程度 以上の観測波形を良好に再現できることを確認で きた。沖縄本島沖の地震ではFAMT 解析の結果、い くつかの地震の深さが海洋マントル中に位置付け られた。この結果はこの地域の地震発生応力場に 関する考察の糸口になる可能性がある(§5.2)。 今回は FAMT 解析において震央を固定して深さ方 学際大規模情報基盤共同利用・共同研究拠点 2019 年度共同研究 最終報告書 向だけの暫定的な解析を実施したことから、今後 は震央の探索も含めた(フルの) FAMT 解析を実施 (して、この地域の地震発生場の考察を深める必要 がある[自己評価 5]。

[3] 構造モデル改良のためのインバージョン手 法の検討

モデルパラメータの摂動に関する波形の変化 量を示す感度カーネルは、構造モデルを改良する 上で波動伝播の様子に関する重要な知見をもたら すものであり、同時に逆問題解析のヤコビアンに 相当するものである。本課題では構造モデルパラ メータを推定する逆問題解析(インバージョン) 手法の検討として、この感度カーネルを沖縄本島 沖の、観測点から100~200km 程度の距離にある複 数の地震について生成して検討した。その結果、 周期12秒程度でも、構造モデルを「斜め」に地震 波が横切るような配置では、観測点と震源を結ぶ 直線経路に関して感度カーネルは非対称な複雑な 空間パターンを示し、地震波が複雑に伝播してい ることが示唆された。周期7.6秒程度ではさらに 複雑になる場合があることや、水深が急激に深く なる海溝に沿った部分に強いパターンが見られる ことから、地形と内部構造が急変している場所で 地震波の散乱が起きていることなどが示唆された (§5.4)。今後は、感度カーネルを計算する際の 構造モデルや震源パラメータを FAMT 解析のも のと統一する作業が必要となる。そして、さらに 多くの地震を対象とした感度カーネルの検討や、 広域波動場を対象とした感度カーネルの計算によ り、短周期地震波の再現性や広域構造モデルの改 良点などに関する知見を深めることが必要となる。 [自己評価 4]

- 7. 研究業績一覧(発表予定も含む)
 - (1) 学術論文 (査読あり) 該当なし。
 - (2) 国際会議プロシーディングス (査読あり)
 該当なし。

- (3) 国際会議発表 (査読なし)該当なし。
- (4) 国内会議発表 (査読なし)該当なし。
- (5) その他(特許, プレスリリース, 著書等) 該当なし。

謝辞 気象庁と防災科学技術研究所からは震源パ ラメータや地震波形データを提供していただきま した。また Global CMT プロジェクトの CMT 解 を利用いたしました。記して感謝いたします。

参考文献(論文表題を省略)

- [1] <u>Okamoto T, Takenaka H, Nakamura T, Earth</u> *Planets Space* **70**:98, 20 June 2018, DOI: 10.1186/s40623-018-0871-z
- [2] <u>Okamoto T, Takenaka H, Nakamura T</u>, Hara T, Earth Planets Space 69:88, 03 July 2017, DOI: 10.1186/s40623-017-0672-9
- [3] Nakamura T, Takenaka H, Okamoto T, Kaneda Y, Bull Seism Soc Am 102:2420-2435, Dec. 2012, DOI: 10.1785/0120110356
- [4] 小松正直, 岡山大学博士学位論文, 2018年.
- [5] National Research Institute for Earth Science and Disaster Resilience, NIED F-net, 2019. doi: 10.17598/NIED.0005.
- [6] <u>Takenaka H, Komatsu M, Toyokuni G, Nakamura</u> <u>T, Okamoto T, Earth Planets Space 69</u>:67, 2 May 2017, DOI: 10.1186/s40623-017-0651-1
- [7] Okamoto T, Takenaka H, Nakamura T, Aoki T, in GPU Solutions to Multi-scale Problems in Science and Engineering, D.A. Yuen et al. (eds.), Chap 24, 375–389, 2013, DOI: 10.1007/978-3-642-16405-7_24, Springer-Verlag Berlin Heidelberg.
- [8] 藤岡 慧、九州大学大学院理学府 地球惑星科学専攻 修士論文、2014年.