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Abstract Coronary heart disease is a leading cause of death worldwide. The main 
cause of coronary heart disease is coronary stenosis, which is mainly due to 
atherosclerosis. Recently, computational fluid dynamics (CFD) has been used to 
compute the blood flow for patient-specific artery with medical images in diagnosing 
ischemic stenosis. However, CFD simulation requires a lot of computational resources 
and time. Therefore, in order to use CFD in clinical practice, it is essential to 
accelerate CFD analysis. In this project, we will use geometric deep learning to build 
a fast surrogate for approximating the 3D blood flow simulation. We will also develop 
a parallelization method to make it possible to apply the deep learning to large-scale 
geometry. In this year, we have developed the method that combines neural network 
inference and boundary exchange to predict the simulation results in large 
computational domains. It exploits neural network to predict the simulation results 
of each subdomain and exchanges boundary between neighbor subdomains to 
maintain consistency in them. This method allows us to apply the same neural 
network architecture to any size of input data. 
 

1. Basic Information 
(1) Collaborating JHPCN Centers  

The University of Tokyo 
(2) Research Areas 

n Very large-scale numerical computation 
n Very large-scale data processing 
o Very large capacity network technology 
o Very large-scale information systems 

(3) Roles of Project Members 
• Takashi Shimokawabe (The University 

of Tokyo): Development of a method for 
predicting large-scale simulation results 

• Weichung Wang (National Taiwan 
University): Development of deep 
learning, surrogate modelling and 
algorithm designs 

• Naoyuki Onodera (Japan Atomic Energy 
Agency): Advice and support to apply 
deep learning to CFD simulations 

• Kengo Nakajima (The University of 
Tokyo): Advice and support for large-
scale computations 

• Toshihiro Hanawa (The University of 
Tokyo): Advice and support for large-

scale deep learning 
• Masashi Imano (The University of 

Tokyo): Advice and support for using 
OpenFOAM 

• Shlok Mohta (The University of Tokyo): 
Development of a surrogate for 
predicting large-scale CFD simulation 

• Sora Hatayama (The University of 
Tokyo): Development of a method for 
predicting large-scale simulation results 

• Atsushi Hasegawa (The University of 
Tokyo): Development of a surrogate for 
predicting large-scale CFD simulation 

• Cheng-Ying Chou (National Taiwan 
Normal University): Advice and support 
of CFD and medical imaging 

• Che-Yu Hsu (National Taiwan 
University Hospital): Advice and support 
of medical backgrounds and knowledge 

• Yikai Kan (National Taiwan University): 
Development of CFD simulations and 
deep learning 

• Mei-Heng Yueh (National Taiwan 
Normal University): Development of 
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computational geometry 
• Wanyun Yang (National Taiwan 

University): Development of CFD 
simulations and deep learning 

• Yuehchou Lee (National Taiwan 
University): Development of CFD 
simulations and deep learning 

 
2. Purpose and Significance of Research 

Coronary heart disease is a leading 
cause of death worldwide. The main cause 
of coronary heart disease is coronary 
stenosis, which is mainly due to 
atherosclerosis. Fractional flow reserve 
(FFR) is defined as the ratio between distal 
pressure and proximal pressure and has 
been used as a standard tool to diagnose 
the severity of coronary stenosis. Recently, 
computational fluid dynamics (CFD) has 
been used to compute the blood flow and 
FFR for patient-specific artery. Some 
clinical trials demonstrated that the 
method combining CFD and medical image 
is better than the method using medical 
image solely in diagnosing ischemic 
stenosis. However, this method can be 
computationally demanding because it may 
take hours to perform CFD simulation. 
This drawback may limit the usage of this 
method in clinic practice. Therefore, it is 
indispensable to accelerate the process of 
CFD analysis. 

In this study, we will use geometric 
deep learning to build a fast surrogate for 
approximating the 3D blood flow 
simulation. We will also develop a 
parallelization method to make it possible 
to apply the deep learning to large-scale 
geometry. This method divides the large-
scale geometry into multiple parts and 

applies deep learning in parallel to them. 
This makes it possible to approximate a 
large-scale 3D blood flow simulation. 

 
3. Significance as JHPCN Joint Research 

Project 
 In this project, we are developing a fast 
surrogate that approximates 3D blood flow 
simulation using geometric deep learning 
and a parallelization method of the 
surrogate for applications with large-scale 
geometry. Since we perform a large number 
of CFD simulation to generate training data 
sets and train neural networks with these 
data sets to build the surrogate, a lot of 
computational resources are indispensable 
to realize this project. We uses a lattice 
Boltzmann method (LBM) code and 
OpenFOAM mainly as CFD solvers. Since 
LBM can achieve high performance on 
GPUs, we have exploited Reedbush-L at the 
University of Tokyo to generate the training 
data sets. We have also utilized Oakforst-
PACS to generate the training data sets 
withy OpenFOAM. We have utilized both 
Oakforst-PACS and Reedbush-L for 
training deep neural networks, since the 
deep learning frameworks achieve high 
performance with Xeon Phi and GPUs, 
which are installed on Oakforst-PACS and 
Reedbush-L, respectively. This project is 
being carried out by collaborative research 
by blood flow experts, CFD experts, the 
experts of large-scale deep learning, and 
high-performance computing experts. 
Therefore, implemented as a JHPCN joint 
research project, this project has been able 
to effectively carry out collaborative 
research and achieve research results. 
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4. Outline of Research Achievements up to 
FY2018 

Not applicable. 
 

5. Details of FY2019 Research 
Achievements 

The purpose of this study is to develop 
an a fast surrogate model that predicts 
steady flow simulation of blood flow using 
deep learning. In this fiscal year, we have 
developed (1) a prediction method for steady 
flow simulation using deep learning, and (2) 
a prediction method for large-scale 
simulation results by extending the (1) 
method. The original plan was to develop 
the prediction of the blood flow simulation 
using OpenFOAM. However, it was found 
that the lattice Boltzmann method (LBM) 
may be more effective in simulating blood 
flow simulations. In this fiscal year, the 
steady flow simulations for (1) and (2) were 
carried out with the LBM, and we focused 
on developing methods to predict these 
simulations.  

5.1. Steady flow simulation using lattice 
Boltzmann method 

The lattice Boltzmann method (LBM), 
which has attracted much attention in 
recent years, is used for efficient execution 
of large-scale simulations. In this study, we 
use the simulation results of steady flows 
with this method as training dataset to 
train a deep learning model and create a 
fast surrogate model. In the prediction of 
the steady-state flow around objects by deep 
learning, it is known that the signed 
distance function (SDF), which represents 
the distance to the geometry, is effective in 
improving the prediction accuracy. SDF is 
used for the LBM simulation and is utilized  

 

Figure1: SDF representation of a cylinder 
shape. 
 
as inputs for prediction by deep learning 
models. Figure 1 shows an example of a 
signed distance function.  

5.2. Prediction method for the simulation 
results of LBM using convolutional neural 
networks 

In this section, we describe a method for 
predicting the LBM results by using 
convolutional neural networks (CNNs) for a 
certain region size. CNNs are neural 
networks containing convolutional layers 
and have been shown to be effective in the 
fields of geometric representation learning 
and image recognition. This method 
predicts the simulation results of the steady 
flow around a cylindrical or polygonal shape 
placed at an arbitrary location. The 
computational domain is 256×128, and the 
fluid flows from negative to positive in the x 
direction. 

5.2.1. Network model 
Figure 2 shows the structure of the 

neural network used in this method. In this 
method, the object shape by SDF and the 
flow velocity in the boundary region 
(boundary condition) are given as inputs to 
the neural network, and the prediction of 
the velocity obtained by the LBM 
simulation over the entire computational 
domain is obtained as outputs. The first 
part of the network is a common network in 
the x and y directions before a fully 
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connected layer, while the second part of the 
network is different in each direction. In 
addition, the existence of the geometrical 
shape at each grid point is obtained from 
the input SDF and applied to the CNN 
predictions as masks. As a result, only the 
predicted velocity in the fluid region where 
no object exists is considered as the final 
predicted velocity. The width of the 
boundary region used as a boundary 
condition is set to 1. The network used in 
this method is based on the one proposed by 
Guo, Li, and Iorio et al. In this study, the 
boundary conditions of the calculation 
region are used as input in addition to SDF 
in order to predict the steady flow over 
multiple regions using this network, while 
only SDF is used as input in the previous 
study. 

In this study, Chainer is used as a deep 
learning framework. ReLU is used for the 
activation function, Xavier is used for 
initialization, and Adam is used for 
optimization. The learning rate is set to 1.0 
× 10-4. 

5.2.2. Dataset 
We explain the data set of the neural 

network used in our method. 
First, we place one or two cylinders or 

polygons in a 1024 × 1024 computational  
domain and simulate a fluid with a 
Reynolds number of 20 flowing from 
negative to positive in the x direction by 
LBM. The number, type, size, and position 
of the cylinders or polygons to be placed are 
changed to perform several steady flow 
simulations. We use a total of six types of 
object shapes: polygons (number of angles: 
3-7) and cylinders. 32 objects with different 
sizes are used for each type. For the 
placement of object shapes in the region, 
two patterns are prepared: one in which one 
type of object shape is placed and another in 
which two randomly selected object shapes 
are placed. We include the simulation 
results in which the two objects affect the 
flow together in the dataset. 

Next, 21 computational domains of 256 
× 128 are cut out from the LBM simulation 
results in each 1024 × 1024 domain. The 
areas to be cut out should not overlap each 
other. In order to use SDF as the input, we 
also prepare the SDF data corresponding to 
each 256 × 128 computational domain. 

 We thus prepare a total of 4,704 
combinations of the LBM calculation results 
and SDF for the 256 × 128 domains, 3,528 
for training and 1,176 for evaluation. 
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Figure2: Network architecture for 2D geometry. 
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5.2.3. Predicted result 
Figure 3 shows the results of the 

prediction using our trained model. It can be 
seen that the proposed method is highly 
accurate. Using a single NVIDIA GPU 
(Tesla P100) on Reedbush supercomputer 
on the University of Tokyo, it takes 13.8 
seconds (30,000 time steps) to reach the 
steady state using the LBM simulation code. 
On the other hand, the proposed method 
using CNN requires 0.006 seconds on one 
GPU. The proposed method can reduce the 
calculation time by 99%. 

5.3. Expanding the prediction region by using 
boundary exchange 

The method of predicting LBM 
simulation results using CNN described in 
Section 5.2 can only predict the results in 
the domain size of the data used in the 
training dataset. Therefore, in this study, 
we propose an extension of this method to 
be used for predicting computational results 
over a larger domain than the domain size 
of the data used in the training dataset. 
This proposed method allows us to apply the 
same neural network architecture to any 
size of input data. 

 
Figure 4: Prediction procedure using an 
iterative loop with boundary exchange. 

 
5.3.1. Proposed prediction method 

Figure 4  shows the prediction 
procedure of the LBM simulation results in 
this method. In this method, the entire 
prediction region is divided into 256 × 128 
subregions and the simulation results in 
each subregion are predicted using the 
method described in Section 5.2. The 
boundary regions of the neighboring 
subregions are overlapped. After the 
prediction is completed once, the prediction 
value of the boundary region is obtained 
from the adjacent subregions, and the 
prediction is performed again by using this 
as the input. By repeating this process with 

Figure 3: Prediction results of a single domain. The CNN predictions, the LBM 
ground truth, and the error between the prediction and the ground truth are shown. 
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an iterative loop, the values of the 
boundaries of subregions become 
continuous. The prediction result for the 
entire region is obtained. This method can 
be applied to any shapes of objects in the 
prediction region. The training data of the 
model for predicting subregions also 
includes a pattern in which an object is 
divided at the boundary of the subregion. 
Thus, the prediction can be made even for 
computational regions where there is an 
object in the boundary of the subregion.  
Note that although Figure 4 shows an 
example of three divisions in the y direction 
for simplicity, the number of divisions can 
be specified arbitrarily for both the x and y 
directions. 

5.3.2. Predicted results 
Figure 5 shows the predicted results 

when an object with a shape similar to a car 
is placed in a region of 1021 × 1017 and a 
fluid with a Reynolds number of 20 flows in 
the x positive direction. This figure shows 

the predictions of flow velocity in the x and 
y directions using this method, the ground 
truth of the velocity obtained by the LBM 
simulation, and the error between the 
predictions and the LBM ground truth. The 
prediction results show the initial and final 
value of the iterative loop. In this case, the 
final loop number is 149. The boundary 
width is set to 1. In the prediction in this 
figure, the entire prediction region is 
divided into a total of 32 subregions, 4 in 
the x direction and 8 in the y direction. It 
can be seen that the values of the predicted 
velocity are discontinuous between 
subregions at the initial state of the 
iterative loop but continuous at the final 
state for both the x and y directions. 
Although the errors are reduced by the 
iterative loops, the errors in the final state 
are still relatively large in the 
neighborhood of the object and at the 
boundaries between subregions. 

  

Velocity x (CNN prediction, loop number = 0) Velocity x (CNN prediction, loop number = 149) Velocity x (LBM ground truth) Err x = | CNN ( loop:149 ) – LBM |

Velocity y (CNN prediction, loop number = 0) Velocity y (CNN prediction, loop number = 149) Velocity y (LBM ground truth) Err y = | CNN ( loop:149 ) – LBM |

Figure 5: Prediction results over a large computational domain consisting of several 
subregions. The CNN predictions (initial and final values), the LBM ground truth, 
and the error between the prediction and the ground truth are shown. 
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6. Progress during FY2019 and Future 
Prospects 

In this research project, we have 
developed a method to predict the 
simulation results in large computational 
domains in 2D. This method combines 
neural network inference and boundary 
exchange. It exploits neural network to 
predict the simulation results of each 
subregion and exchanges boundary 
between neighbor subregions to maintain 
consistency in them. In order to apply this 
method to blood flow simulations, we are 
currently extending this method to 3D 
simulations. 

The research plan for the next year is 
described below. As the study progressed, it 
was found that LBM may yield faster and 
more accurate results than OpenFOAM for 
blood flow simulations used as training 
data. In addition, since LBM uses structure 
grids, it is more suitable for deep learning. 
Then, in the next year, we attempt to 
extend our own LBM code to simulate blood 
flow. If LBM does not work for this purpose, 
we will use OpenFOAM as originally 
planned.  

Since our proposed method currently 
only supports 2D computations with 
specific physical conditions, we will expand 
this method to 3D computations with 
various physical conditions. We will replace 
Chainer with PyTorch as the deep learning 
framework to use since development of 
Chainer has been discontinued. After the 
proposed method becomes able to predict 
various simulation results in 3D, we will 
verify that the proposed method can predict 
simulation results using simplified 
geometry for blood vessels. We will then 

attempt to predict the complex blood flow 
simulation by the proposed method using 
data sets generated by LBM and/or 
OpenFOAM. 

 
7. List of Publications and Presentations 

(1) Journal Papers (Refereed) 
None. 
(2) Proceedings of International 

Conferences (Refereed) 
None. 
 

(3) International conference Papers (Non-
refereed) 

[1] Takashi Shimokawabe, Naoyuki 
Onodera, Kengo Nakajima, Toshihiro 
Hanawa, Shlok Mohta and Weichung Wang, 
“Fast Surrogate for Approximating Large-
scale CFD Simulations,” the Asian Pacific 
Congress on Computational Mechanics 
(APCOM) 2019, Taipei, Dec. 2019. 
[2] Sora Hatayama and Takashi 
Shimokawabe, “Steady Flow Prediction 
using Convolutional Neural Networks with 
Boundary Exchange,” International 
Conference on High Performance 
Computing in Asia-Pacific Region 
(HPCAsia) 2020, Fukuoka, Japan, January, 
2020. (poster) 
(4) Presentations at domestic conference 

(Non-refereed) 
[3] Shlok Mohta, Kengo Nakajima, and 
Takashi Shimokawabe, “Recurrent Neural 
Network based linear embeddings for non-
linear dynamics evolution,” 2019 年並列/分
散/協調処理に関する『北見』 サマー・ワーク

ショップ  (SWoPP2019), 北見 , 2019 年  7 
月. 
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(5) Other (patents, press releases, books 
and so on) 

None. 


