
1

jh190043-NAHI

Hierarchical Low-Rank Approximation Methods on

Distributed Memory and GPUs

Rio Yokota (Tokyo Institute of Technology)

Abstract

Hierarchical low-rank approximation of dense matrices can reduce the complexity of ma-
trix multiplication and factorization from O(N3) to O(N log2 N) while trading accuracy for
speed. Modern processors are equipped with low-precision arithmetic, which yield much
higher throughput if low accuracy can be tolerated. On such processors, performing exact
O(N3) dense linear algebra operations through the use of LAPACK and BLAS libraries is
a waste of Flops. Our goal is to replace these exact dense linear algebra libraries with our
hierarchical low-rank approximation library. The functions needed for this are the capability
to perform LU and QR factorization on GPUs and distributed memory. For FY 2019 we
focused on the following critical steps to achieving this goal; Implement nested basis version
of H-matrix (H2-matrix), Use of runtime for H-LU on GPU, Batched randomized SVD on
GPUs, Extending the H-matrix code to QR factorization.

1 Basic Information

1.1 Collaborating JHPCN Centers
The University of Tokyo
Information Technology Center

Tokyo Institute of Technology
Global Scientific Information and Computing
Center

Hokkaido University
Information Initiative Center

Kyoto University
Academic Center for Computing and Media
Studies

Nagoya University
Information Technology Center
1.2 Research area
Very large-scale numerical computation

1.3 Roles of Project Members
Rio Yokota (Tokyo Institute of Technology)
Low-rank approximation using FMM and its
GPU-MPI implementation

Ichitaro Yamazaki (Sandia National Labo-
ratories) Development of distributed memory
runtime ParSEC, and blocked BLAS library
for GPU

Akihiro Ida (University of Tokyo) Feature
extension of hybrid MPI/OpenMP H-matrix
code HACApK, and its integration with Par-
SEC and block MAGMA

Takeshi Iwashita (Hokkaido University)
Application of HACApK to boundary inte-
gral solvers for electromagnetics, and opti-
mization of H-matrix-vector product

Takayuki Aoki (Tokyo Institute of Tech-
nology) Application of HACApK to Poisson
solvers for multiphase flows

Final Report for JHPCN Joint Research of FY 2019 2

Satoshi Oshima (Nagoya University) GPU
implementation of HACApK and integration
with MAGMA

Tasuku Hiraishi (Kyoto University) Dy-
namic load-balancing of HACApK

Kengo Nakajima (University of Tokyo)
Extend capability of HACApK within the
ppOpen-HPC framework

Jack Dongarra (University of Tennessee)
Development of distributed memory runtime
ParSEC, and blocked BLAS library for GPU

2 Purpose and significance of

Research

The purpose of this research is to develop
a scalable and highly optimized open source
library for hierarchical low-rank approxima-
tion of dense matrices (H-matrices). Such
large dense matrices naturally appear in elec-
tromagnetic, seismic, quantum, and fluid
simulations, as well as Bayesian inference
and machine learning applications. Un-
like their dense counterparts which require
O(N3) time and O(N2) memory, H-matrices
can perform matrix multiplication and fac-
torization in O(Nlog2N) time and O(N)
memory, have controllable arithmetic inten-
sity, have asynchronous communication, and
can exploit deep memory hierarchy, which
makes them an ideal solver/preconditioner
for the Exascale era.

In the previous JHPCN project we have
ported our H-matrix library HACApK to
GPUs and used batched MAGMA to further
accelerate the GPU implementation. The
original HACApK code was only capable of
performing H-matrix vector multiplications,
but we have extended it to perform matrix-
matrix multiplications, and LU factorization.
We have also developed a lattice H-matrix
method, which uses BLR structure for the
global data structure, while using the H-
matrix structure for the local data struc-

ture, by embedding H-matrices into the BLR
blocks. However, the scalability of the multi-
GPU implementation is still far from ideal.

In the proposed JHPCN project we plan
to improve the scalability of the multi-
GPU H-LU factorization code, and also ex-
tend HACApK to handle QR factorization
as well. We will also investigate the H2-
matrix format to reduce the communication
by exploiting the nested bases. Further-
more, we will introduce runtime systems such
as StarPU/OmpSs to handle the complex
data dependencies in the hierarchical ma-
trix structure, while maximizing concurrency
during the execution on heterogeneous archi-
tectures.

3 Significance as JHPCN Joint

Research Project

Hardware architecture is now moving to-
wards low-precision arithmetic, backed by
the increasing demand from the machine
learning field. When such low-accuracy can
be tolerated, exact dense linear algebra op-
erations become unnecessary, and libraries
such as BLAS and LAPACK, which are at
the heart of HPC applications, can be re-
placed by hierarchical low-rank (H-matrix)
libraries that effectively do the same work in
near linear time. There is still ample room
for investigation regarding the use of such
low-precision in scientific computing appli-
cations, where methods such as iterative re-
finement have recently gained interest. H-
matrices can be used as a scalable precon-
ditioner for such problems, and we aim to
quantify the advantage over existing state-
of-the-art methods in this JHPCN project.
Furthermore, batched operations on GPUs
are becoming popular and libraries such as
MAGMA and CUBLAS are providing low-
level functions that can process many small
dense matrix operations in large batches.
H-matrices can benefit greatly from such
batched dense linear algebra libraries, and in
doing so will be able to extract a large por-
tion of the performance of the latest GPU
and many-core architectures including Ten-

Final Report for JHPCN Joint Research of FY 2019 3

sorCores. Since libraries like MAGMA and
CUBLAS are optimized to use TensorCores,
we do not have to do the implementation our-
selves.

4 Outline of Research Achievements

up to FY2018

Up to FY2018 we have tackled various
problems regarding hierarchical low-rank ap-
proximation and its parallel implementation.
There are various derivatives of hierarchi-
cal low-rank approximation methods such
as; BLR, HODLR, HSS, H-matrix, and H2-
matrix. We started from the most basic
variant – BLR, which uses low-rank off-
diagonal blocks, but not a hierarchical ma-
trix. We started with the most basic op-
erations such as matrix-vector and matrix-
matrix multiplication. This was extended
during FY2016 to LU factorization and im-
plemented in OpenMP and MPI. In FY2017,
we extended the matrix format to more
complex HSS and H-matrix structures, and
extended the implementation to GPUs for
the matrix-vector multiplication. We uti-
lized batched MAGMA operations to process
the matrix-vector multiplication efficiently
on GPUs. In FY2018, we further extended
the implementation of the LU factorization
to multiple-GPUs using a hybrid MPI +
OpenMP + CUDA code.

5 Details of FY2019 Research

Achievements

The four main goals for the fiscal year 2019
are

1. Implement nested basis version of H-
matrix (H2-matrix)

2. Use of runtime for H-LU on GPU
3. Batched randomized SVD on GPUs
4. Extending the H-matrix code to QR fac-

torization

During the first half of FY2019, we were
able to complete all goals except for the
first one (H2-matrix). In the second half of
FY2020, we were able to complete the re-

maining nested basis implementation.
5.1 Implement nested basis version of H-

matrix
For the extension to nested basis, we first
started from an implementation that uses
uniform basis, where the bases are shared
among the rows and columns, but the matrix
is not hierarchical. This allowed us to experi-
ment with different code structures using our
C++ implementation [10]. Once the uniform
basis is finished, we can add the upper levels
of theH2-matrix. Our code is written so that
the LU and QR operations, the nested and
non-nested basis, the CPU, GPU, and MPI
implementation can be developed separately,
and can be integrated to achieve a combina-
tion of these features without any extra work.
5.1.1 H2-matrix construction
For matrices generated using a kernel func-
tion, the separation in the clusters creates
low-rank blocks. As an analogy to the Fast
Multipole Method, the construction of H2-
matrices also uses the distances between clus-
ters to determine the block admissibility, and
the admissible blocks formed from the same
cluster are sharing the same basis. In our im-
plementation, to find the basis of any desig-
nated cluster, we actively generates another
arbitrary accompanying cluster, that has a
distance far enough from the designated clus-
ter by checking the admissibility condition.
By performing an interpolative decomposi-
tion on the block formed from the desig-
nated cluster and the accompanying cluster,
we can obtain the uniform basis that can be
shared among all blocks formed from that
cluster. Furthermore, when constructing the
Uniform basis Block Low-Rank matrices, it is
only matters of compressing the admissible
blocks from the already found bases. How-
ever, the construction of H2-matrices also in-
cludes sampling the basis of combined lower-
level clusters and the formation of a hierarchy
on cluster bases themselves. In our imple-
mentation, we still used the same interpola-
tive decomposition method on higher-level
clusters, which could potentially be harmful
to the performance due to the increased sam-
ple block size.

Final Report for JHPCN Joint Research of FY 2019 4

5.1.2 H2-matrix addition and multiplication
When performing H2-arithmetics, two key
operations are split and collect. The split
operation takes a compressed low-rank ma-
trix block and projects it to lower levels,
using only the transfer matrices stored in
the cluster basis hierarchy; the collect oper-
ation is the opposite of the split operation,
which forms a compressed low-rank block
from lower-level blocks, not mattering if the
lower-level blocks are stored in dense or low-
rank formats. When adding or subtracting
two H2-matrices with the assumption that
the cluster bases are the same, we actively
convert the other matrix into the same hier-
archical structure as the accumulator matrix,
by using the split and collect operations ac-
cordingly. On the other hand, when perform-
ing multiplications involvingH2-matrices, we
still uses the accumulator as the structural
reference, and the same assumption that
the two multiplicands shares the inner bases
among them while the outer bases with the
accumulator. As the split and collect opera-
tions have very low computational costs, we
actively performs a forward transformation
of the two multiplicand matrices, that ap-
proximates all blocks from splitting to lower
levels and collecting the lower level blocks
to approximate higher levels. Whenever the
accumulator needs the approximated higher-
level blocks of the multiplicands, it does re-
quire additional computations. As a contrast
to the forward transformation, when the mul-
tiplicand is highly compressed but the accu-
mulator is not, the backward transformation
uses only split, to project a low-rank interme-
diate multiplication result down to the very
bottom levels. With the assistance from the
two transformations, theH2-matrix multipli-
cation could be finished quite efficiently as
well.
5.1.3 H2-matrix arithmetics with basis up-

dates
The previous section addressed highly ef-
ficient ways of performing H2-arithmetics,
but not all H2-arithmetics can satisfy the
assumption of the basis shared among
operands, such as the multiplications and

additions happened in LU factorization. In
such cases, we are also exploring the meth-
ods of updating the accumulator basis as the
computation goes, while keeping the shared
basis structure intact, and to both mini-
mize the computational costs and to im-
prove accuracy. In our implementation, we
have left rooms for the basis hierarchy that
can take additional fill-ins. The basis up-
date only happens in low-rank accumula-
tions, as it checks if the current bases could
compress the other block within the speci-
fied accuracy limits, without appending addi-
tional vectors. Although the accuracy checks
and the basis updates have relatively low
computational costs, the large number of
required low-rank accumulations happening
potentially leads to greater computational
time required, when comparing to the pre-
vious method which does not include basis
update. However, the additional computa-
tional effort has proved itself effective in ac-
curacy improvements, during LU factoriza-
tion of Uniform basis Block Low-rank matri-
ces, that the relative error has improved from
1E-5 (no basis update) to 1E-10 (with basis
update).
5.2 Use of runtime for H-LU on GPU
In the previous JHPCN project we ported
HACApK to GPU and also extended it to
handle H-LU factorization. However, these
efforts had not been combined, and we did
not have an H-LU factorization on GPUs.
For the H-matrix-vector multiplication, we
were able to make use of the batched dense
linear algebra libraries because there were no
dependencies between the tasks. Unfortu-
nately, the batched libraries cannot be used
if there are dependencies between the tasks
in the batch, which is the case for LU fac-
torization. To solve this problem out plan
was to resort to runtime systems like StarPU
and OmpSs to handle these dependencies in
the H-LU algorithm and efficiently schedule
them on the GPU.

After experimenting with StarPU and
OmpSs, we reached the conclusion that the
overhead of both StarPU and OmpSs were
too large to be used at the granularity re-

Final Report for JHPCN Joint Research of FY 2019 5

Fig. 1 Illustration of the task scheduling
of H-LU on the host

quired for our H-LU operations. We could
superficially increase the compute intensity
by making the leaf blocks of the dense diag-
onal blocks larger, or by making the ranks
large for the off-diagonal low-rank blocks.
However, this will lead to suboptimal base-
line performance, and its GPU implementa-
tion will not be the ideal solution. There-
fore, we developed our own lightweight DAG
scheduler, which performs much better than
StarPU or OmpSs [7]. Our DAG (Directed
Acyclic Graph) scheduler runs on the CPU
and queues the tasks to be executed on the
GPU. Then we dispatch a single GPU kernel
that does the entire H-LU operation.

Our scheduling algorithm consist of the fol-
lowing four steps, as shown in Fig. 1.

1. Task tree generation
CPU traverses the hierarchical structure
and determines the operations needed to
perform on each block to complete the
LU factorization correctly, without mod-
ifications on the actual data.

2. Tree Flattening & DAG generation
Tree flattening takes the tree of tasks
generated, and gets rid of intermediate
hierarchical nodes, which are fully repre-
sented by their dense and low-rank chil-
dren. Data dependency checks are then
performed between each task, and the re-
sult is stored as a DAG.

3. Scheduling the Tasks

With the tasks and their data depen-
dency information, the scheduler uses
2 different heuristics to create a static
scheduling: which task to fetch & which
worker to schedule to. Additional trim-
ming and the estimated FLOPS are also
used to assist the scheduler to further im-
prove device utilization.

4. GPU task queue generation
The last task of the CPU is translat-
ing the scheduling and the task infor-
mation to the GPU correctly. Data
pointers are batched together into an ar-
ray, and BLAS-like and low-rank rou-
tines are enumerated. Along with the
matrix dimensions and pointer offsets,
each worker gets an integer array to rep-
resent the tasks being assigned to them.

As all tasks are properly batched, there
is no need for GPU to know the hierarchi-
cal structure, which implies no more recur-
sion inside the kernel. In general, the kernel
is made of 2 components; kernel level con-
trolling functions and thread-block level rou-
tines. Additionally, warp-level intrinsics are
used to optimize the thread-block level rou-
tines.

On the kernel level, it is sometimes neces-
sary to deliberately halt one or several SMs
in order to correctly meet data dependency
requirements until another SM finishes its
work. However, as NVIDIA does not provide
such functions in the CUDA programming
model, we allocated space in the global mem-
ory as communication space for the SMs, and
adopted a spin-lock mechanism. Instead of
halting, SMs each assigns 1 thread that ac-
tively checks the state of the lock that it is
waiting. In order to save the memory band-
width, and possess minimal impact to other
busy SMs, a waiting time hint is also pro-
vided by the CPU, correlating to the esti-
mated FLOPS that needs to be completed.

On the thread-block level, several
LAPACK-like routines and Low-rank
routines are implemented as device functions
in the kernel. A schematic of the GPU
execution is shown in Fig. 2 Each device

Final Report for JHPCN Joint Research of FY 2019 6

Fig. 2 Illustration of the CUDA grid exe-
cution of device function LAPACK kernels

function takes all threads assigned to 1 SM
to execute, and utilizes the full amount of
shared memory and L1 cache. Inside each
device function, vectorized memory I/O and
warp shuffling techniques are used to further
optimize each routines.
Our entire code consists of only four basic
routines:

• GETRF: LU decomposition
• TRSM: Triangular solve of linear sys-
tems

• GEMM: General Matrix-matrix multi-
plication

• ACCM: Accumulation of low-rank
blocks

When testing our code, we used double
precision (FP64), constant rank 16, and a
minimal block size of 256 x 256 for compres-
sion. Large low-rank blocks are partitioned
deeper to at most N/8 x N/8 to increase
task level parallelism. In general, without
extreme tuning, we achieved satisfactory per-
formance on a single GPU (NVIDIA Tesla
V100 PCI-E 16GB), that can rival some well-
optimized CPU-based hierarchical matrix li-
braries.

We compared to an existing H-matrix li-
brary HLIBpro, which also implements a
task-based H-LU using only CPU. HLIBpro
uses LAPACK for dense and low-rank rou-
tines. As the result shows, our implementa-
tion shows generally an order of magnitude

Fig. 3 Comparison between our GPU im-
plementation (pspl) and an existing CPU
implementation (HLibPro)

Fig. 4 Schematic of randomized SVD

faster than HLIBpro. HLIBPro with DAG
scheduling performs worse due to the large
overhead for smaller matrix sizes. It can be
seen that our DAG scheduler has very little
overhead, and is even negligible compared to
the fast GPU execution time. Also, the scal-
ing of our GPU H-LU code (pspl) is very
close to the ideal O(Nlog2N). If we split the
GPU kernel, it reduces the size of the DAG
for each kernel, and we see a performance
benefit when the matrix size is large. This is
the first time a LU decomposition of an H-
matrix has shown O(Nlog2N) complexity for
a GPU implementation. Actually we are not
aware of any GPU implementation of the H-
matrix LU decomposition, let alone a GPU
implementation that scales ideally.
5.3 Batched randomized SVD on GPUs
The H-matrix actually has a preparation
step before it can be used for matrix mul-

Final Report for JHPCN Joint Research of FY 2019 7

tiplications and factorization. The originally
dense matrix must be partitioned into a hi-
erarchical block structure with large sub-
matrices in the off-diagonal and small sub-
matrices near the diagonal. Then these sub-
matrices must be compressed into a low-rank
matrix using U , Σ, and V as described above.
The most näıve way to do this is to perform
an SVD and shrink the matrices to obtain the
low-rank matrices, but this is very slow. The
adaptive cross approximation (ACA) sam-
ples the rows and columns of the original
sub-matrix to quickly obtain a low-rank rep-
resentation U and V but is known to fail for
certain types of matrices. In the previous JH-
PCN project we developed a method to use
the fast multipole method (FMM) to perform
this low-rank compression. We adapted the
kernel independent FMM so that the com-
pression can be used for different equations
without modifying the FMM kernels. How-
ever, this approach has a limitation that an
analytical expression to generate the dense
matrix is necessary. In the present fiscal year,
we have investigated an alternative fast com-
pression technique, which can be applied to
any dense sub-matrix. We developed a highly
optimized batched randomized SVD that can
reliably compress all sub-matrices at once on
the GPU, while achieving high Flop/s on the
latest GPU architectures by exploiting Ten-
sorCores [5, 8].

A majority of the computation in the ran-
domized SVD is the tall-skinny QR (TSQR)
as shown in Fig. 4. Therefore, we have fo-
cused our efforts on optimizing the TSQR
on modern GPU architectures with Tensor-
Cores. TSQR results in a batched QR op-
eration, but such functions are not available
in cuBLAS or MAGMA. Therefore, we im-
plemented our own batched QR operation,
which can utilize TensorCores for the GEMM
operations. We use a Householder QR al-
gorithm that utilizes the shared memory on
GPUs effectively.

The results of our TSQR implementation
are shown in Figs 5 and 6. The residual is

Fig. 5 Residual error of TSQR on Ten-
sorCores

Fig. 6 Orthogonality of TSQR on TensorCores

calculated as

||A−QR||
||A||

, (1)

while the orthogonality is calculated as

||I −QTQ||√
N

(2)

We compare a FP32 version with FP16 ver-
sion with and without TensorCores. The
cases where TensorCores are used are noted

Final Report for JHPCN Joint Research of FY 2019 8

Fig. 7 Calculation time of TSQR on Ten-
sorCores

with ”TC” in the legend. We also, compare
with cuSOLVER with FP32 and FP64. The
error of FP64 is approximately 10−15, and
the error of FP32 is around 10−6 for both
our TSQR and cuSOLVER’s QR. The er-
ror when using FP16 is even larger (around
10−2), and this does not seem to improve
when TensorCores are used. This trend is
similar when looking at the orthogonality in
Figure 6. TensorCores can reduce the loss
of trailing digits because the accumulation is
performed with FP32. However, the source
of the error in this case is not the loss of trail-
ing digits, but the truncation error when the
FP32 variables are converted to FP16 during
the input to TensorCores. We are currently
developing a refinement procedure that can
achieve close to FP32 accuracy, even when
using TensorCores.

The timing results are shown in Fig. 7,
while the Flop/s are shown in Fig. 8. The
results using TensorCores are shown in the
solid lines, while the others use a dashed
line. Our TSQR using TensorCores is gen-
erally much faster than the cuSOLVER QR,
except for very small matrices. We are able
to achieve close to 15 TFlop/s when using
TensorCores with FP16 everywhere.

Fig. 8 Flop/s of TSQR on TensorCores

5.4 Extending the H-matrix code to QR fac-
torization

We have already implemented the LU fac-
torization of H-matrices for a hybrid dis-
tributed/shared memory environment [1].
For FY2019 our goal is to extend this fur-
ther to QR factorization. Before tackling
the full H-matrix QR factorization, we de-
cided to first experiment with the QR fac-
torization of a non-hierarchical block low-
rank (BLR) matrix [2]. We developed two
types of approaches for the QR factorization
of BLR-matrices, i.e., a Modified Block Gram
Schmidt (MBGS) algorithm-based approach
and a tile-QR factorization-based approach.
5.4.1 Modified Block Gram Schmidt (MBGS)

algorithm-based approach
First, we applied an approach using the mod-
ified block Gram Schmidt (MBGS) algorithm
for the QR factorization of the BLR-matrices
[2].

As a result QR factorization, a given ma-
trix A ∈ Rn×n is factorized as A := QR,
where Q ∈ Rn×n is an orthogonal matrix
and R ∈ Rn×n is an upper triangular ma-
trix. When the matrices A,Q,R are divided
into Nb×Nb blocks, we can apply the MBGS
algorithm shown in Fig. 9. In Fig. 9 the sub-
scripts of the matrices denote the row and
column indices of the lattice. The symbol

Final Report for JHPCN Joint Research of FY 2019 9

Fig. 9 Modified Block Gram Schmidt
(MBGS) algorithm.

* represents all blocks, e.g., A∗,j is the j-th
block column which is a tall-skinny matrix.
The function TSQR(A∗,j) returns the QR
factorization of the tall-skinny matrix A∗,j
such that QT

∗,jQ∗,j = I and Q∗,j , Rj,j = A∗,j

where Q∗,j ∈ RN×l and Rj,j ∈ Rl×I .
For the block-divided matrix, we can for-

mally derive a BLR-matrix when all the
off-diagonal sub-matrices are represented by
low-rank sub-matrices. Using the MBGS al-
gorithm in Fig. 9, we consider the QR fac-
torization of the BLR-matrix. As with the
case of QR factorization of a dense matrix, we
perform the operations block-by-block. The
difference is sub-matrices in the off-diagonal
blocks are formatted by the low-rank repre-
sentation. We enforce the following two con-
ditions on the computed matrices Q and R,

C1: The matrices Q and R have the same
lattice structure as A.

C2: The off-diagonal sub-matrices Qij and
Rij are formatted by the same rank kij
representation as Aij .

To satisfy these conditions, the operations
with low-rank sub-matrices are required in
addition to the usual multiplication and sum-
mation of dense matrices. As a result, the
multiplication QR would not be equal to A,
but an approximation. This is because the
summation of the two low-rank sub-matrices

Fig. 10 Complexity of the QR factoriza-
tion of a BLR-matrix based on the MBGS
algorithm

increases the rank of the resulting matrix,
and the condition C2 cannot be satisfied
without approximating the resulting matrix.
To enforce the condition, we further recom-
press the resulting matrix to reduce the rank.
For the approximated summation, we employ
the so-called“rounded addition”method. In
this method, the increased rank is reduced by
the efficient use of the TSQR and singular
value decomposition (SVD).

Our proposed algorithm for the QR fac-
torization of the BLR-matrices is the algo-
rithm which replaces the matrix operations
on lines 2, 4 and 5 of MBGS (Fig. 9) with
low-rank arithmetic operations. The com-
putational complexity of our proposed algo-
rithm depends on the block sizes. Assuming
that all the blocks are square and have the
same size l, the breakdown of the complexity
is shown in Fig. 10. When l ∝

√
N , the com-

plexity takes O(N2), while it is O(N3) for a
dense matrix.

For the parallelization of our proposed al-
gorithm, we use a hybrid MPI+OpenMP
programming model. We assign a set of block
columns to an MPI process. To balance the
load among MPI processes, we adopt a block
cyclic assignment strategy in the column di-
rection. Figure 11 shows the our proposed
parallel MBGS algorithm for BLR-matrices.

We here discuss the performance of our
proposed algorithm. For the algorithm, we
re-implemented functions of the HACApK
library. As a test problem, we have se-
lected the static electric field analyses. All
calculations were carried out using an SMP
cluster system, which is equipped with In-
tel(R) Xeon(R) E5-2680 v2 (10core× 2 sock-
ets/node) and 32 GB DDR3 memory on

Final Report for JHPCN Joint Research of FY 2019 10

Fig. 11 Procedure of the parallel MBGS
algorithm for BLR-matrices on the an MPI
process

a node. For the interconnect, a Fat-Tree
with Full-bisection bandwidth using Infini-
Band FDR × 2 is used, which has a link
throughput of 6.8 GB/s. We used the Intel
Fortran compiler with the -O3 optimization
option and the Intel MPI and MKL libraries.

Our proposed MBGS algorithm provides
the approximation of QR factorization of the
BLR-matrix. In addition to the error, the or-
thogonality of the resulting matrix is an im-
portant index to evaluate the quality of the
QR factorization. We investigate the accu-
racy of the error and the orthogonality of Q
and observe dependency on matrix size. Fig-
ure 12 shows the results. The error and the
accuracy of orthogonality are the same or-
der as the accuracy of the BLR-matrix to be
factorized.

Figure 13 shows the parallel scalability us-
ing the hybrid MPI+OpenMP on the dis-
tributed memory system and the computa-
tional time when varying the number of cores
from 1 to 200. In the calculations, we use a
single MPI process with 10 OpenMP threads
per socket, which means two MPI processes

per a node. Parallel speed-up up to about
140 cores is observed in Fig. 13 (a). The
fastest time is about 20-fold faster than the
time of serial computation. As Fig.13 (b)
shows, similar results are observed if we use
test matrices of different sizes.
5.4.2 Tile-QR factorization-based approach
We extend the tile-QR factorization to han-
dle low-rank off-diagonal blocks.

A graphical representation of the tile-QR
factorization of a BLR matrix is shown in
Fig. 14. Each picture shows a LAPACK sub-
routine. GEQRT performs the QR decomposi-
tion where

QR(Akk) → (Ykk, Tkk, Rkk). (3)

LARFB applies the orthogonal matrix to ob-
tain the R matrix as

Rkj = (I − YkkT
T
kkY

T
kk)Akj . (4)

TPQRT performs a block QR decomposition
where

QR

(
Rkk

Aik

)
→ (Yik, Tik, Rkk) . (5)

TPMQRT applies the block orthogonal matrix
to obtain the block R matrix as(

Rkj

Aij

)
=

(
I −

(
I
Yik

)
TT
ik

(
IY T

ik

))(
Rkj

Aij

)
(6)

What is different from the existing work
is the fact that we have low-rank blocks on
the off-diagonals during the tile-QR factor-
ization, which requires special care if one
wishes to keep the low-rank blocks from be-
coming dense during the factorization.

Similar to the TSQR case, we show the
residual error in Fig. 15 and the orthogonal-
ity in 16. We are using FP64 for all calcula-
tions in this case. The large residual error is
coming from the low-rank approximation of
the BLR matrix. The orthogonality seems to
be quite good even though the residual error
is fairly large.

Final Report for JHPCN Joint Research of FY 2019 11

Fig. 12 The error of factorization (a) and accuracy of orthogonality of the resulting
orthogonal matrix Q (b) derived from our proposed MBGS algorithm for BLR-matrices.

Fig. 13 Parallel scalability of parallel MBGS for BLR-matrices.

6 Progress during FY2019 and Future

Prospects

We were able to achieve all four project goals
in our proposal for FY2019. The implemen-
tation of the nested basis version is now com-
plete, and we are investigating how to par-
allelize this efficiently on multiple-GPUs us-
ing task-based runtime systems. The use of
runtime for H-LU on GPU is complete and

has been presented as a poster at SC’19 [7].
Batched randomized SVD on GPUs has been
implemented using TensorCores with mixed
precision and presented as a poster at SC’19
(best poster candidate) [5,8]. Extending the
H-matrix code to QR factorization has been
implemented using Modified Gram-Schmidt
[2] and a block Householder transformation.
The results have been compared to show
superior complexity for the Gram-Schmidt,

Final Report for JHPCN Joint Research of FY 2019 12

Fig. 14 Graphical representation of the QR factorization of a BLR matrix

Fig. 15 Residual error of BLR QR

while the parallel efficiency and orthogonal-
ity of the resulting H-QR factorization was
superior for the Householder transformation.

We plan to further enhance the capabil-
ity of our generalized hierarchical low-rank
approximation code. Now that a highly op-
timized TSQR on GPU is available, its ex-
tension to randomized SVD or interpolatory
decomposition (ID) is straightforward. The
reason for this is because the hotspot in these
methods is thee TSQR. The extension of
BLR-QR to H-QR is almost completed. The
code is written and is going through some

Fig. 16 Orthogonality of BLR QR

final debugging for corner cases.

7 List of Publications and

Presentations

Journal Papers (Refereed)
1. I. Yamazaki, A. Ida, R. Yokota,

Jack Dongarra, Distributed Mem-
ory Lattice H-matrix Factorization,
The International Journal of High
Performance Computing Applications
(2019).

2. A. Ida, H. Nakashima, T. Hiraishi,

Final Report for JHPCN Joint Research of FY 2019 13

I. Yamazaki, R. Yokota, and
T. Iwashita, QR Factorization of
Block Low-Rank Matrices with Weak
Admissibility Condition, IPSJ Trans.
ACS (2019).

3. Z. Bai, T. Hiraishi, H. Nakashima,
A. Ida, M. Yasugi, Parallelization of Ma-
trix Partitioning in Construction of Hi-
erarchical Matrices using Task Paral-
lel Languages, IPSJ Trans.ACS (2019).
(Outstanding Research Award).

4. M. Abduljabbar, M. Al Farhan, N. Al-
Harthi, R.Chen, R.Yokota, H. Bagci, D.
Keyes, Extreme Scale FMM-Accelerated
Boundary Integral Equation Solver for
Wave Scattering, SIAM Journal on Sci-
entific Computing, Vol. 41, No. 3, pp.
C245–C268 (2019).

Proceedings of International Conferences (Ref-
ereed)
5. H. Ootomo, R. Yokota, Batched QR

Decomposition Using TensorCores, The
81st National Convention of IPSJ,
Fukuoka, Japan, March 14-16, 2019.

6. S. Ohshima, I. Yamazaki, A. Ida,
R. Yokota, Optimization of Numerous
Small Dense-Matrix-Vector Multiplica-
tions in H-matrix Arithmetic on GPU,
ATMG In IEEE MCSoC, Singapore,
October 1, 2019.

7. Q. Ma, R. Yokota, Runtime System for
GPU-based Hierarchical LU Factoriza-
tion, SC19 research poster, Denver, Col-
orado, 17-22 November, 2019.

8. H. Ootomo, R. Yokota, TSQR on Ten-
sorCores, SC19 research poster, Denver,
Colorado, 17-22 November, 2019. (best
poster candidate).

9. Z. Bai, T. Hiraishi, H. Nakashima,
A. Ida, M. Yasugi, Implementation of
Partitioning of Hierarchical Matrices us-
ing Task Parallel Languages, ICPP 2019,
(Best Poster Award).

Proceedings of International Conferences (Non-
refereed)
Presentations at domestic conference (Non-
refereed)
10. P. Spalthoff, R. Yokota, Flexible and

Simplistic Hierarchical Matrix-Based
Fast Direct Solver, The 170th Work-
shop on High Performance Computing
(SWoPP2019), Kitami, Japan, July 24,
2019.

Other (patents, press releases, books and so
on)

