Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures

Final Report for JHPCN Joint Research of FY 2019

jh190041-NAHI

Innovative Multigrid Methods

Kengo Nakajima (Information Technology Center, The University of Tokyo, Japan)

Abstract

In the present work, we are developing robust and efficient GMG and AMG methods, where we
are focusing on development of algorithms for (1) efficient and robust smoother, (2) parallel global
reordering/aggregation methods for robustness, (3) utilization of near-kernel vectors for robustness,
and (4) hierarchical methods for scalability. Moreover, we develop new algorithms for Parallel-in-

Space/Time (PinST).

1. Basic Information

(1) Collaborating JHPCN Centers
* The University of Tokyo (Oakforest-PACS)
* Hokkaido University (New System A)
¢ Kyushu University (ITO Subsystem-A)

(2) Research Areas
B Very large-scale numerical computation
O Very large-scale data processing
O Very large capacity network technology
O Very large-scale information systems

(3) Roles of Project Members (*: Student)

* Kengo Nakajima (The University of Tokyo) (Co-
PI) Administration, Applications, GMG, AMG,
PinST, Hierarchical Methods

* Matthias Bolten (University of Wuppertal) (Co-
PI) GMG, AMG, Smoother, Near-Kernel Vectors

¢ Takeshi Iwashita (Hokkaido University) PinST

* Yasuhiro Takahashi (Doshisha University) PinST

e Akihiro Fujii (Kogakuin University) AMG,
PinST, Near-Kernel Vectors

* Osni Marques (Lawrence Berkeley National
Laboratory) GMG, AMG, Smoother, Near-Kernel
Vectors

* Ryo Yoda* (Kogakuin University) PinST

¢ Akihiro Ida (The University of Tokyo) GMG,
AMG

¢ Masatoshi Kawai (RIKEN R-CCS=The
University of Tokyo) GMG, AMG, Smoother,
Global Reordering

¢ Naoya Nomura* (The University of Tokyo)

AMG, Near-Kernel Vectors

* Yen-Chen Chen* (The University of Tokyo)
PinST

¢ Satoshi Ohshima (Kyushu University=>Nagoya
University) Code Parallelization, Profiling &
Optimization

¢ Tetsuya Hoshino (The University of Tokyo) Code
Parallelization, Profiling & Optimization, SELL-
C-c

* Toshihiro Hanawa (The University of Tokyo)
Code Parallelization, Profiling & Optimization,
Mesh Generation

* Gerhard Wellein (Friedrich-Alexander-University
(FAU) of Erlangen-Niirnberg) SELL-C-c

¢ Lisa Claus* (University of Wuppertal) GMG,
AMG, Smoother, Near-Kernel Vectors

2. Purpose and Significance of the Research

A multigrid is a scalable multilevel method for solving
linear equations and preconditioning Krylov iterative
linear solvers, and is especially suitable for large-scale
problems because of its scalable feature. The parallel
multigrid method is expected to be one of the most
powerful tools on exa-scale systems. There are two
approaches in the multigrid method, where one is a
geometrical multigrid (GMG) with explicit hierarchical
meshes, and the other is an algebraic one (AMG).
Although multigrid methods have been applied to rather
well-conditioned problems for a long time, many

sophisticated methods for robustness of multigrid have

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures

Final Report for JHPCN Joint Research of FY 2019

been developed for ill-conditioned problems derived
from real-world scientific and engineering applications.
In the present work, we are developing robust and
efficient GMG and AMG methods, where we are
focusing on development of algorithms for (1) efficient
parallel global

and __robust smoothers, (2)

reordering/aggregation methods for robustness, (3)

utilization of near-kernel vectors for robustness, and

(4) hierarchical methods for scalability.

Although parallel computations in science and

engineering have been focusing on domain-
decomposition approach in space direction, a new
approach with parallel computation in time direction
(PinST, parallel-in-space/time) has been introduced
recently. MGRIT

[Falgout, R.D. et al., STAM SISC, 2014] is one of the

(Multigrid-Reduction-in-Time)

most well-known PinST methods, and it introduces the
idea of multigrid in time domain. MGRIT was very
successful in various types of applications including
nonlinear ones, but it suffers from instability at coarse-
level grid in time. Recently, we proposed a new method
(TSC, Time Segment Correction), where no coarse time
step at coarse levels in time domain is needed [Kaneko,
S., Fujito, Y., Fujii, A., Tanaka, T., Iwashita, T., IPSJ
SIG Technical Report, 2017-HPC-161-7, 2017 (in
Japanese)]. Because preliminary results show better
performance than MGRIT, we will develop efficient and
robust TSC method for large-scale problems (PinST-
TSC). PinST has been mainly applied to implicit
problems due to constraint of time step. But, it is really
needed in explicit methods, where many time steps are
needed. In the present work, we will develop a new
method for PinST with explicit time marching (PinST-
Exp). Developed methods (GMG, AMG, PinST-TSC,
PinST-Exp) are parallelized by OpenMP/MPI hybrid
parallel programming model, and optimized for
multicore/manycore clusters in JHPCN by SELL-C-c
matrix storage format [Kreutzer, M., Hager, G., Wellein,

G. et al.,, SIAM SISC, 2014], where Professor G.

Wellein (Friedrich-Alexander-University (FAU) of
Erlangen-Niirnberg) is one of the original developers of
SELL-C-c. Performance and robustness will be
evaluated by 3D FEM/FDM applications on these
systems. Finally, developed programs and libraries will
be deployed on the supercomputer systems in each
center (Hokkaido, Tokyo and Kyushu), and released to
the public.

Multigrid method is a promising approach for large-
scale computing in exa-scale era. We develop robust and
efficient parallel multigrid methods for both of GMG
and AMG, focusing on robust and efficient smoothers,
parallel reordering, utilization of near-kernel vectors,
and hierarchical methods which are proposed and
developed by ourselves. Both of PinST-TSC and PinST-
Exp are also our original method. Developed methods
will be implemented as a numerical library and it will
be applied to various types of applications. This is one
of the first practical library of multigrid including PinST,
especially PinST-Exp. It is expected to provide
outstanding performance for large-scale real-world

applications.

3. Significance as a JHPCN Joint Research Project
JHPCN provides a variety of supercomputer systems.
We can develop and optimize our programs on each
platform very easily under collaboration with members
of the JHPCN centers. We can deploy our programs and
libraries on the supercomputer systems in each center,
and release to the public. Improvement of such released
programs are accelerated if they are used by users of
supercomputer systems for practical scientific and
engineering applications. This is an international joint
proposal by Germany-Japan-USA including experts of
multigrid method and HPC in each country. MOU
(memorandum of understanding) for collaborative
research has been exchanged between Lawrence
Berkeley National Laboratory (LBNL) and Information

Technology Center, The University of Tokyo

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures

Final Report for JHPCN Joint Research of FY 2019

(ITC/U.Tokyo) since September 2009, and between
University of Wuppertal and ITC/U.Tokyo since July
2017. FAU and ITC/U.Tokyo have been collaborating
in ESSEX-II Project of German SPPEXA Program by
DFG/JST since 2016. Moreover, this proposal includes

most of the experts in multigrid method in Japan.

4. Outline of the Research Achievements up to FY
2018

This is a 2-year project in FY.2018 and FY.2019, where
we do fundamental research & development, code
optimization and preliminary evaluation of
performance and robustness in the first year, and
performance evaluation using real-world large-scale
applications in the second year. In FY.2018, we had
many excellent developments which were not planned

in the beginning of the project, such as (1) Parallel

Aggregation, (2) Iterative Solver with MGRIT
Preconditioning, (3) PinST-Exp/Imp Method, (4)
Evaluation of Efficiency and Accuracy by

Computations with Single Precision. We have also done
the preliminary works on AM-hACGA, which were
originally planned in FY.2019.

@ GMG
Target program of GMG is pGW3D-FVM for 3D
Groundwater Flow through Heterogenous Porous

Media by FVM (Finite Volume Method) in Fig.1.
(b)

through

Fig.1 flow
heterogeneous porous media. (a) Distribution of water

conductivity; (b) Streamlines

Example of groundwater

In the 1st Year (FY. 2018), we
Optimization of pGW3D-FVM on OFP by CM-RCM

have conducted, (1)

and SELL-C-c, (2) Improvement of Convergence and

Efficiency by New Smoother (MS-BMC-GS,
Multiplicative-Schwartz type Block Multicolor Gauss-
Seidel), (3) Optimization of Mesh Generation by IME
(Fast File Cache on the Oakforest-PACS (OFP)) on OFP,
(4) Preliminary Study of Adaptive Multilevel Z/CGA
(AM-hCGA) and (5) Evaluation by 3D GW code on the
supercomputers.

We evaluated the performance of pGW3D-FVM code
with #CGA on the Oakforest-PACS (OFP) system at
JCAHPC/The University of Tokyo. Fig. 2 describes the
results of evaluation up to 8,192 nodes (524,288 cores,
because 64 of 68 cores were used on each node). ACGA
was also very effective on OFP. The prototype of AM-
hCGA (Adaptive Multilevel 2CGA) was also developed,
although that was originally planned to be developed in
FY.2019. Original pGW3D-FVM adopts RCM
reordering for thread parallel computation, but it is not
suitable for manycore architectures. We have applied
CM-RCM to the code, and CM-RCM with 2-colors is
the most efficient on OFP with Intel Xeon Phi (Knights
Landing, KNL).

15.0

® Flat MPI:FX10
-O-Flat MPI:FX10-hCGA °
125 [—e-HB 4x16: OFP
—-HB 4x16: OFP-hCGA L]
10.0 L
2 °
n

7.5 °

o o //’
°
°

25
1.E+01

1.E+02 1.E+03

Node#

1.E+04

Fig.2 Performance of MGCG solver of pPGW3D-FVM
on Fujitsu FX10 using up to 4,096 nodes (65,536 cores),
and OFP up to 8,192 nodes (524,288 cores), weak
scaling: max. total problem size: 17B meshes on FX10,
and 35B on OFP, RCM reordering [4]

@ AMG

Target program of GMG is GeoFEM SA-AMG for 3D
Solid Mechanics by FEM. In the 1st Year (FY.2018), we
have conducted, (1) Parallelization of GeoFEM SA-
AMG by OpenMP/MPI Hybrid, (2) Improvement of

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures

Final Report for JHPCN Joint Research of FY 2019

Convergence and Efficiency by MS-BMC-GS, (3)

Improvement of Parallel

Convergence by

Reordering/Aggregation, (4) Development and
Implementation of New Strategies for Extraction of
Near-Kernel Vectors, and (5) Evaluation by 3D FEM on
the Supercomputers.

As the first step, we investigate the execution time
and parallel efficiency by applying Hybrid
parallelization. The relaxation of the solution part was
performed twice per level by Symmetric Gauss-Seidel.

Moreover, CM-RCM was applied at each level.

3.5 B Other
- Elev.d
Q
._3. 3.(-) - - Blev.34
525 | mLev.3
£20
=T Lev.2 3
g 15 mLev.2
'4;3 1.0 Hlev.12
205 mLev.]
50.0

Flat MPI 1nlp64t 1n2p32t 1ndpl6t 1n8pSt

The number of node, process thread

Fig.3 execution time on OFP (The ratio of V-cycle)

Our method | | |
1 8 64 216 512

Number of processes

10000| ® Previous

1000

Execution time [sec.]

100
10
1

Fig.4 The result of time to verify the optimum number
of near-kernel vectors

Fig. 3 is the result of execution time on OFP. Hybrid
(1n4p16) is almost the same as Flat MPI. Moreover, the
calculation time of the V-cycle, especially smoother,
accounts for the majority of whole execution time. On
the other hand, the communication cost is small. This is
because the number of nodes is small in this experiment.
We will investigate this issue in highly parallel
environment. In SA-AMG, the way how to set the near-
kernel vector is very important to achieve good

convergence and scalability. Because our previous

method presented in SC17 was very expensive, we
proposed a more efficient method in the present work.
Fig.4 shows the verification time to set the optimum
number. The verification was time significantly reduced
by the prediction method. From these results, our
method can predict the optimum number of near-kernel

vectors easily.

® PinST-TSC

Target program of PinST-TSC is pHEAT-3D for 3D
Nonlinear Heat Transfer by FEM. In the Ist Year
(FY.2018), we have conducted (1) Implementation of
PinST-TSC to pHEAT-3D and (2) Evaluation of the

Performance on Supercomputers.

@ PinST-Exp
In the 1st Year (FY.2018), we developed (1) Parallel
Iterative Solver Preconditioned with MGRIT, (2) New
PinST for Applications with Explicit Time-Marching
(PinST-Exp/Imp)

and are conducting 3)

Implementation of PinST-Exp/Imp to pHEAT-3D.

1) MGRIT-based Preconditioning

We investigated parallelization in time direction

especially for explicit methods. We took up the MGRIT
method for parallelization of explicit time evolution,

and proposed to use MGRIT as a preconditioner of

Krylov subspace method.
space: x4, time step size:256
R R = S S & S
N .
I M ’ e
“l.\\ o
g % .
E . >
¢ RN
Juist e
—+— pgrires A <
(s *— mgrit 'l,.' .
’ —*— Ingrit grmres L

i a3 19 L3
number of iteratior

Fig.5 History of Convergence using OFP

Fig.5 shows the residual history of the proposed

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures

Final Report for JHPCN Joint Research of FY 2019

method, MGRIT, and non-preconditioned GMRES
using a single node of OFP. MGRIT preconditioned
GMRES reached convergence faster than the other 2
methods, and it exemplified that the coarse grid
problems’ instability can be soothed by using MGRIT

as a preconditioner.

2) Hybrid Explicit/Implicit Method
If PinST is applied to applications with explicit time-

marching, stability problem occurs at coarser levels in
time direction. In order to avoid this situation, we
proposed a new method PinST-Exp/Imp, where explicit
time marching is applied to the finest level in time
direction, and implicit ones for other coarser levels. Fig.
6 shows the results (strong scaling) for 2D heat transfer
problem using 4 nodes of OFP. The orange line
(Exp/Imp) provides the faster computation time than
Exp/Exp and Imp/Imp. This is one of the first examples
for PinST computations with explicit time-marching.

102 n:4x4, timestep=8192, process=[1, 4, 16, 64, 128]

—&— explicit-explicit
~u— explicit-implicit
—&— implicit-implicit

10t

Elapsed time [sec]

— B
T Ptmbd—PL= 128

10° 10! 102
number of processes

Fig.6 Effect of PinSt-Exp/Imp, Strong Scaling up to
4 Nodes of OFP

® Parallel Aggregation

We proposed a parallelization method with multi-
coloring for parallel aggregation in the AMG. The
performance and convergence of the AMG strongly
depend on the results of aggregation. We proposed a
parallelization method of the aggregation process with
the multi-coloring method. By this approach, compared
with the parallel and sequential aggregation, we

achieved constant convergence. Fig.7 shows the

comparison between the sequential/decoupling
aggregation and the proposed method (multi-coloring)
for Parabolic FEM problem in "SuiteSparse Matrix
Collection". If we apply the decoupling aggregation, the
convergence varied according to the degree of
parallelisms. As we expected, the parallel aggregation
with multi-coloring kept almost constant convergence
even if the degree of parallelism changed. In the future,
we will evaluate the performance of the AMG with the
parallel aggregation and MS-BMC-GS smoother on the

massively parallel systems.

Parabolic FEM

-

Fig.7 Effect of Parallel Aggregation with Multi-
Coloring on Parabolic FEM Problem (Iterations of
AMG Solver)

ERERE

5. Details of FY 2019 Research Achievements
@ Overview
In FY.2019, our plan for development in this project is

as follows:

¢ Geometric Multigrid (GMG) for 3D Goundwater
Flow
» Further Optimization of the pPGW3D-FVM on
OFP (CM-RCM, SELL-C-c, MS-BMC-GS)
(Hoshino, Wellein,
Kawai, Ida, Bolten, Claus)

Hanawa, Nakajima,

» Improvement of Convergence by Parallel
Reordering (Kawai, Nakajima)

» Improvement of Convergence by Utilization
of Near-Kernel Vectors (Nomura, Bolten,
Claus, Nakajima),

» Further Optimization of Mesh Generation by
IME on OFP (Hanawa, Nakajima)

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures

Final Report for JHPCN Joint Research of FY 2019

» Improvement of Scalability by Adaptive
Multilevel ACGA (AM-ACGA) (Nakajima)

» Evaluation by 3D GW Code on the
Supercomputers (Nakajima).

e Algebraic Multigrid (AMG, SA-AMG) for 3D

Solid Mechanics

» Optimization of GeoFEM SA-AMG on OFP
using ELL, SELL-C-c (Hoshino, Hanawa,
Nakajima, Nomura, Wellein)

» Further Improvement of the Algorithm by
MS-BMC-GS (Kawai, Ida, Nomura, Marques,
Bolten, Claus)

» Further Improvement of the Convergence by
Parallel Reordering/Aggregation (Kawai,
Marques, Bolten, Claus, Nomura)

» Implementation of =CGA and MA-hCGA for
Scalability (Nakajima, Nomura)

» Evaluation by Supercomputers (Nomura,
Nakajima).

* PinST-TSC

» Further optimization of the pHEAT-3D (Fujii,
Iwashita, Takahashi, Nakajima, Hoshino)

» Implementation of Multigrid Solver (SA-
AMG) in Space Domain for Scalable

Computation (Nomura, Fujii)

» Final Evaluations on the Supercomputers

(Fujii, Iwashita).
* PinST-Explicit
» Further Optimization of the MGRIT

Preconditioner (Yoda, Fujii)

» Further Optimization of pHEAT-3D with
PinST Exp/Inp (Yoda, Fujii, Nakajima)

» Development of hybNS for 3D Compressible
Navier-Stokes Flow by FVM with PinST-Exp
(Chen, Nakajima)

» Final Evaluations on the Supercomputers
(Yoda, Fujii)

e Parallel Algorithms
» MS-BMC-GS

» Parallel Reordering/Coloring
» Parallel Aggregation

In the following part, we will describe the activities on

these issues.

() AM-hCGA
[2,7,8,9,10,11,14,17]
The parallel multigrid method is expected to play an

with IHK/McKernel

important role in large-scale scientific computing on

exa-scale supercomputer systems. Previously we
proposed Hierarchical Coarse Grid Aggregation (hCGA,
Fig.8), which dramatically improved the performance
of the parallel multigrid solver when the number of MPI

processes was O(10%) or more.

(a)
e [HHBHBEIEEEEN
w- [HHTHINEEEEEN
o o o N N o N N N N N o
H H H H H H H H H H H H
wo-ns [[AN NENENEE
w2 [NN NENENEEEE
R S S S N NN N N S N N
« Communication overhead !
could be reduced
« Coarse grid solver is more

expensive than original
approach.

Coarse grid solver on
a single MPI Process
(multi-threaded,

further MG)

 If process number is larger,
this effect might be
significant

Coarse

(N Fine |
= [IHHHBEBEEEEEER

el 11111111111
s 2 P I S I
;

Ll LLL L

| | {
Level=m-3 . . .
Level=m-2 . . .
| | |
i
Coarse grid solver on a .
single MPI Process (multi-

threaded, further MG) :

Fig.8 Procedures for Parallel Multigrid (a) Coarse
Grid Aggregation (CGA), where information of each
MPI process is gathered in a single MPI process for

computation at level=m-2, (b) Hierarchical CGA

(hCGA) [4]

Because #CGA can handle only two layers of parallel

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures

Final Report for JHPCN Joint Research of FY 2019

hierarchical levels, the computation overhead due to
coarse grid solver may become significant when the
number of MPI processes reaches O(10°)- O(10°) or
more. In the present work, we propose AM-ZCGA
(Adaptive Multilevel 2CGA) that can take into account
multiple layers of three or more levels, and show
preliminary results using the Oakforest-PACS (OFP)
system by JCAHPC. Additionally, we also examine the
impact of a lightweight multi-kernel operating system,
called IHK/McKernel, for parallel multigrid solvers

running on OFP.

-IIIIIIIIIII
Layer IIIIIIIIIII

r r
. []
[] []

I
[]
[]

r r
[] []
[] []

|

;

Coarse grid solver on a]
single MPI Process (multi- .
threaded, further MG) .

Fig.9 Overview of AM-ACGA (Adaptive Multilevel-
hCGA) with 3 hierarchical layers

The previous work by the authors [Nakajima, K.,
2014 IEEE ICPADS] showed that the ZCGA can avoid
the overhead of coarse grid solver even when the
number of MPI processes increases. If the number of
MPI processes is more than O(10*), the ACGA method
is considered effective. However, when the number of
processes is on the order of O (10°) -O (10°), the two
layers of ACGA shown in Fig. 8(b) are not enough,
because the number of MPI processes at the second
level of AWCGA could be O(10%). Therefore, it is
necessary to increase the number of layers of parallel
hierarchical levels to 3 or more in order to reduce the
overhead by coarse grid solver if the number of MPI
processes is O (10°), or more. In this study, we propose
an Adaptive Multilevel #/CGA (AM-ACGA) method

with an increased number of hierarchical levels as

shown in Fig. 9.
We performed weak

pGW3D-FVM (Fig.1) using up to 2,048 nodes (131,072

scaling experiments on

cores) of the OFP. The summary of the computation is

as follows:

(D Elapsed computation time of MGCG solver was
evaluated using CGA, hACGA, and AM-hACGA
(Fig.12) on OFP. The number of nodes was 128, 256,
512, 1,024, and 2,048.

@ The following two types of problem sizes were
implemented:

* Medium (m): 64x32x32 (65,536) per core,
4,194,304 per node, maximum 8,589,934,592 for
2,048 nodes

* Small (s): 32x16x16 (8,192) per core,524,288 per
node, max 1,072,741,824 for 2,048 nodes

* Tiny (t): 16x8x8 (1,024) per core, 65,536 per node,
max 134,217,728 for 2,048 nodes

@ Flat MPI is applied for all cases (with -qopenmp
option).

@ Measurements are done 5 times for each case, and

the best timing was adopted.

Fig.10 shows relative fluctuation between maximum
and minimum measured time. Although the behavior is
generally random, the relative fluctuation is increasing

as core number, and it is 20% -70% at 2,048 nodes.

80.00

B m:hCGA
m:AM-hCGA

1s:hCGA

= s:AM-hCGA

1 t:hCGA

t:AM-hCGA

70.00 [

60.00

50.00 [—

X 4000

30.00

20.00

10.00

0.00

8192 16384 32768 65536

131072

Fig. 10 Relative time fluctuation for 5 measurements,
100x(Max.Time-MinTime)/Min.Time

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures

Final Report for JHPCN Joint Research of FY 2019

The relative fluctuation of computation time in Fig.10
is presumably due to various types of OS noise, such as
job scheduler and file system activities. On the OFP
system, the period of timer interrupt of the first two
cores (0" and 1*") on the first tiles are set to 1kHz, while
timer interrupts on the other 66 cores are disabled.
Therefore, interference by the OS can be reduced, if 0"
and 1* cores are not used for the application, as we do
in the present work. Although major processes related
to OS and job scheduler are pinned to 0" and 1% cores,
other Linux kernel components (e.g., certain kernel
threads) are not necessarily bound to the OS cores.
Generally, the effect of such noise becomes larger, as
the number of cores or MPI processes increases, and the
problem size per core becomes smaller. The relative
fluctuation sometimes reaches more than 50%, as
shown in Fig.10. Under these conditions, proper
evaluation of the performance of AM-ZCGA at 2,048
nodes is difficult.
IHK/McKernel is a lightweight multi-kernel

operating system designed for high-end
supercomputing, and is developed by RIKEN R-CCS.
There are two main components of the software stack, a
low-level software infrastructure, called Interface for
Heterogeneous Kernels (IHK) and a lightweight co-
kernel called McKernel. McKernel is a lightweight co-
kernel developed on top of IHK. It is designed
explicitly for high-performance computing workloads,
but it retains a Linux compatible application binary
interface (ABI) so that it can execute unmodified Linux
binaries. There is no need for recompiling applications
or for any McKernel specific libraries. McKernel
implements only a small set of performance sensitive
system calls and the rest of the OS services are
delegated to Linux. Specifically, McKernel provides its
own memory management, it supports processes and
multi-threading, it has a simple round-robin co-
operative (tickless) scheduler, and it implements

standard POSIX signaling. It also implements inter-

process memory mappings and it offers interfaces for
accessing hardware performance counters. Applications
are executed on the lightweight kernel, and only
performance insensitive operations are offloaded to
Linux, therefore OS noise is significantly reduced. In
particular, the performance of collective
communication by IHK/McKernel is better than that of
Linux on OFP. Finally, many applications attained
efficient and robust performance on OFP with may
nodes.

Fig.11 shows the relative time fluctuation for 5
of ACGA and AM-ACGA with

Although

measurements

IHK/McKernel. large values are still
measured in several cases, relative time fluctuation is
much smaller than the cases without IHK/McKernel in
Fig.16. Especially, it is less than 3.20% at 131,072 cores
(2,048 nodes). Therefore, we can expect proper

evaluation of performance of =CGA and AM-ACGA.

80.00

B m:hCGA+McK
m:AM-hCGA+McK
B s:hCGA+McK
6000 I m 5:AM-hCGA+McK
mthCGA+McK
t:AM-hCGA+McK

70.00 |—

50.00 [

%

40.00

30.00

20.00

10.00

0.00

8192 16384 32768 65536 131072

Fig. 12 Relative time fluctuation for 5 measurements,
with IHK/McKernel: 100x(Max.Time-
MinTime)/Min.Time

Each plate of Fig.12 (a)-(c) shows computation time
for weak scaling of optimum cases for ZCGA, and AM-
hCGA, with and without IHK/Mckernel. Computation
time for MGCG is normalized by the time of optimum
case of ACGA without IHK/McKernel at each core
number. Therefore, the values of Y-axis (Ratio) are
always equal to 1.00 for ZCGA without IHK/McKernel.
Effects of IHK/McKernel for improvement of the
performance of #CGA at 131,072 cores (2,048 nodes) is

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures

Final Report for JHPCN Joint Research of FY 2019

approximately 4% for Medium (m), 17% for Small (s),
and 22% for Tiny (t). If the results of =CGA+Mck (O),
and AM-hCGA+McK (€) in Fig.12(a)-(c) are
considered, improvement is very slight for Medium
(1.50%), and Small (0.34%) at 131,072 cores. But the
improvement of performance by AM-ACGA over hCGA
for Tiny case at 131,072 cores is 7.81%.

(a) 1.10
1.00 M
0.90
2
T
080
-O-hCGA
070 || —-AM-hcGA
-O-hCGA+McK
—-AM-hCGA+McK
0.60

4096 8192 16384 32768 65536
Core #

(b) ' h
1.00
0.90 *— o

T ———

~0-hCGA

070 [— ~+AM-hCGA
-0-hCGA+McK
~-AM-hCGA+McK

131072 262144

Ratio

0.80

0.60

4096 8192 16384 32768
Core #

65536 131072 262144
1.10

© 1.00 46—4"’*/\.

0.90

0.80
~O-hCGA
070 [—+—AM-hCGA

-O-hCGA+McK
- AM-hCGA+McK

Ratio

0.60

4096 8192 16384 32768 65536
Core #
Fig.12 Computation time for MGCG solvers up to
2,048 nodes (131,072 cores) of OFP, normalized by
computation time for #CGA at each core number,
hCGA/AM-hCGA: without IHK/McKernel,
hCGA/AM-hCGA+McK: with IHK/McKernel, (a)
Medium (m), (b) Small (s), (c)Tiny (t)

131072 262144

In this work we have proposed AM-ACGA, which can
take into account multiple layers of three or more
parallel hierarchical levels for large-scale computation
with O(10%)-O(10%) or more MPI processes. We have
implemented the proposed method to the MGCG
solvers of pPGW3D-FVM, and evaluated the efficiency
and robustness of the developed method on up to 2,048

nodes (131,072 cores) of the OFP system. On OFP,
fluctuation of computation time due to various types of
OS noise on Linux, occurs. The relative ratio of
fluctuation was more than 50% in this study. Under
these conditions, proper evaluation of the performance
of the proposed method (AM-ACGA) at 2,048 nodes is
difficult. We deployed IHK/McKernel, a lightweight
multi-kernel OS developed at RIKEN R-CCS, which
provides efficient and scalable execution environment
on large-scale systems by reducing OS noise and
communication overhead. IHK/McKernel reduced the
fluctuation of computation time to less than 10% of the
original case using Linux. The maximum ratio of
performance improvement by THK/McKernel is more
than 20% for MGCG solver by #CGA using 2,048
nodes of OFP. IHK/McKernel is especially effective for
reduction of overhead by MPI communications, for
which the maximum ratio of improvement was 35%.
Finally, it was proved that AM-ACGA is faster than
hCGA if the number of MPI processes is large, and
problem size per process is small, and the maximum
improvement of performance by AM-ACGA over hCGA
is 7.81% at 2,048 nodes of OFP using IHK/McKernel.
We demonstrated that IHK/McKernel is a powerful
software for performance evaluation on large-scale
supercomputer systems. Currently, vectorization is not
enough. Further optimization using more sophisticated
method for vectorization, such as SELL-C-o, will be

investigated.

® AMG for 3D Solid Mechanics: Near Kernel
Vectors [1,19,22]

In the smoothed aggregation algebraic multigrid (SA-

AMG) method, the way how to set the near-kernel

vector is very important things to achieve good

convergence and scalability. In the present work, we

propose a new extraction method more efficiently.
SA-AMG is efficient and scalable for solving large-

scale linear equations. SA-AMG achieves good

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures

Final Report for JHPCN Joint Research of FY 2019

convergence and scalability by damping various
wavelength components efficiently. To achieve this
damping, SA-AMG creates multi-level matrices which
are hierarchically coarser than the original matrix.
Moreover, the convergence of the method can be further
improved by setting near-kernel vectors defined as
nonzero vector p satisfying Ap = 0.

There are several existing works on near-kernel
vector extraction method. In our previous work, we
proposed a method that extracts near-kernel vectors and
add them at each level, and evaluated the robustness and
efficiency [1]. By using our method, the convergence
and execution time is improved. However, the
extraction cost is expensive compared to the solution
time of linear equations.

To reduce this cost, in the present work, we propose
anew extraction method that extract near-kernel vectors
at coarse level using eigenvalue algorithm. Moreover,
to set the near-kernel vectors at each level, this method

interpolates extracted vectors to finer levels.

; Given: L,k,

3| Forl= Lto1

2| ifi==Lthen

5 Wy, = {wilAwf = Afwf,k=1,..,k.}
6 else

7 wi = PLawl A8 =2, =1,..,k,
8 fork=1tok,do

9 Relax on Ajw/* =0
10 End for
11 Endif

End for

12| Qutput W, as the near_kernel vectors

L: The level number to apply eigensolver

A;: Matrix A of level 1

[]

® k,: Number of extracted near-kernel vectors

[)

® Pl .: Amatrix to interpolate level [+1 to [

Fig.13 The outline of the extraction method

Given: L, W, ..., W;
Forl=1toL
Multilevel_creation(W,;)
VT/1+1 = RlHl]/Vl
End for
Output W,, ..., W as the near_kernel vectors

ANV WN -

® R[*!: A matrix to interpolate level [+ 1 to [

® Multilevel_creation(W;): Recreation of the
interpolate matrices and coarser level
matrices by using W;.

Fig.14 The outline of the way to set the near-kernel
vectors to coarser levels for proposed method

Fig.13 shows the outline of proposed extraction
method of only level 1. This method needs to input the
level number L (L is setto 2 in this study). Eigenvalue
solver is applied at L (Line 4). After that, calculated
eigenvectors close to 0 eigenvalues is interpolated by
using P matrix to fine level (Line 6). To set coarser level
near-kernel vectors, Fig.14 is applied after Fig.13.

In this study, we investigate the effectiveness of
proposed method by comparing previous method in 3d
elastic problem. Table 1 shows the target of comparison.
From Fig.15, the extraction cost of proposed method
can be reduced compared to previous method. Moreover,
From Fig.16 and 17, proposed method is the same good
convergence as previous methods. As above, our
proposed method can extract near-kernel vectors at low

cost compared to previous method.

Tablel The target of comparison in this experiment

Candidate Details
Previous 1 Proposed at [Nomura, N. et al.,
VECPAR2016, 2016]
Previous 2 Proposed at [Nomura, N. et al.,
ACS65,2019][1]
Proposed Using Fig.13 and Fig.14 method

Moreover, to investigate the effectiveness for other
problem settings, we apply to various problems from
SuiteSparse Matrix Collection (https://sparse.tamu.edu

/). Table2 shows the list of problems. Table3 and Table4

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures

Final Report for JHPCN Joint Research of FY 2019

show the result of extraction time and iterations,
respectively. From these tables, proposed method can

also realize the low-cost extraction and good

convergence.

18.0
516.0
$14.0
012.0
£10.0
580
*g 6.0
§ 4.0
w 2.0

0.0

=@=—Previous 1
Previous 2
Proposed

4 5 6 7 8 9
of near-kernel vectors at level 1

10

Fig.15 The extraction time at single process case

16
14 m Previous 1 ®Previous 2 = Proposed
012
210
©
o8
ob
3* 4
2
0
4 5 6 7 8 9 10

of near-kernel vectors at level 1
Fig.16 The number of iterations at single process case

2.0
S P —"
&1 5 et —_—
£ »~
1.0 =S
[bt LS
.“g ‘&7}_&_-5_--*__.»
305 |[=@=Previous 1
) Previous 2
w Proposed
0.0

4 5 6 7 8 9
of near-kernel vectors at level 1

10

Fig.17 The execution time at single process (The solid
lines (round marker) show the whole execution time
(setup + solution part), and the dashed lines (triangle
marker) show the execution time of only solution part.

From these results, in this experiment, proposed
method is effective way to extract near-kernel vectors at

low cost. Proposed method has some input parameter

11

(such as L, k,). Because these parameters influence the
performance, we will investigate the way to set the
suitable parameter. Moreover, our goal is development
of robust and efficient solver for any problems.

Therefore, we must improve the extraction method and

investigate at other ill-conditioned problems.

Table2 The list of problem matrix information

Name # of rows # of NNZ Condition
Number

ex10 2,410 54,840 | 9.10e+11

besstk28 4,410 219,024 | 9.45e+08

slrmg4ml 5,489 262,411 | 1.81et+06

af shell 504,855 | 17,562,051 —

Table3 The extraction time at various problem test

Name Previous 2 Proposed
ex10 9.08e-01 4.44e-02
besstk28 2.85e+00 5.17e-02
slrmg4m1 4.37e+00 6.67e-02
af shell 2.87e+02 1.31e+03

Table4 The number of iteration at various problem test
(SGS: Symmetric Gauss-Seidel preconditioned CG,

“af shell” - “SGS” is not converged)

Name SGS Previous 2 | Proposed
ex10 369 36 48
besstk28 1543 355 475
slrmg4ml 282 29 72
af shell — 86 157

@ PinST-TSC [2]

We have continued development of PinST algorithms
for nonlinear problems. In order to accelerate the
convergence, many parallel time integration algorithms
such as parareal and MGRIT use “coarse grid”
simulation with enlarged time step width to propagate
prior time step information to later time steps at a fast
pace but with low accuracy. However, problems with
enlarged time step width tend to cause instability, which
leads to difficulty with the time integration. On the other
hand, the parallel time integration method, parallel TP-
EEC method (Time-Periodic Explicit Error Correction),
that does not introduce re-discretization with enlarged

time step width was also known for time-periodic

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures

Final Report for JHPCN Joint Research of FY 2019

nonlinear magnetic field problems. It uses the Jacobian

matrix information to calculate rough solution
correction.

We extended the correction scheme of the TP-EEC

method to deal with multi-level structure more than one
coarse level, and applied it to an ordinary nonlinear time
integral simulation problem. We call it TSC (Time
Segment Correction) method. In addition, we studied its
implementation method and checked the effectiveness
in comparison with the MGRIT method.
Our implementation method is described in Fig.18. Fine
level corresponds to usual nonlinear time integration
problem, and the coarse level is linear problem
calculated from Jacobian matrices over all time steps.
Here, the coarse level matrix becomes block lower
triangular form, and is easily solved by forward
substitution. TSC-loop3 corresponds to nearly 3
iterations of TSP-loop1, and coarse level corrections of
a TSC-loop3 iteration can be calculated in pipelined
manner, when time steps are block distribution to
processes.

Fig.19 shows the execution time of each method
when the problem size corresponding to the number of
time steps is enlarged. The problem is 2-dimensional
heat diffusion equation with nonlinear diffusion
coefficient. It shows that MGRIT shortens the execution
time in comparison with the step-by-step method for
problems with larger than 8,192 time-steps in this
numerical test setting. The TSC methods reached
convergence faster than the step-by-step method for all
problems including small sized problems. In
comparison with the MGRIT method, TSC methods are
faster than the MGRIT method for almost all problems.

The TSC loop3 was the fastest.

12

TSC loopl TSC loop2 TSC loop3

Fine level -----@------@-----@---0-- @ ----@---O--Q--- 9----

Residual vector Correction vector

Coarse level

@ F-smoothing, the Jacobian calculation, and
update of the coarse level matrix

® Coarse level correction and CFC-smoothing

O Coarse level correction,
and update of the Jacobian and the coarse level matrix

B Forward assignment

Fig. 18 Cycle shapes: TSC loop 1,2 and 3

10000

Seq.: 200 sec.
TSC loop3: 128 sec.

g
3 Seq.: 11162 sec.
g TSC loop3: 4051 sec.
=
& 100
=
)
5 O Step-by-step integration
2 > MORIT
8 TSC loop1
< TSC loop2
© TSC loop3
1
256 512 1024 2048 4096 8192 16384

Number of time steps

Fig.19 Execution time with different number of
time steps

As for applicability to existing application codes, the
TSC method uses only Jacobian matrices for calculation
of the coarse level problem. Therefore, the TSC method
becomes “nonintrusive” method for applications that
can output Jacobian matrices. We will increase the

evaluation cases in various simulation fields.

® PinST-Explicit
1) MGRIT Preconditioning [3]
We proposed the MGRIT preconditioning to improve

the convergence and stability of PinST solvers in 2018.
In 2019, we applied the MGRIT preconditioning to a
one-dimensional linear mass-damper system and
evaluated it on Oakforest-PACS. The Newmark-beta
method was used to discretize the governing equations.

Fig.18 shows the execution time of the PinST solvers

Elapsed times [sec.)

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures

Final Report for JHPCN Joint Research of FY 2019

with 229 (about one-million) time steps and 48 mass
points, using the acceleration data of Tokai earthquake
observed at the Kogakuin University. We compared
the time-marching method, MGRIT, and MGRIT
preconditioned GMRES (MGRIT-GMRES). This
experiment is performed with weak scaling. The time-
step width is fixed and the time-range increases with the
number of time steps. The labels in Fig.20 indicate the
number of iterations for each solver. As the number of
time steps increased, the number of iterations of the
conventional method, MGRIT, significantly increased,
exceeding the execution time of the time-marching
method. This result may be due to the instability caused
by the enlarged time-step with. In contrast, our proposed
method keeps a constant number of iterations and
reduces the execution time by about 5.98 times at the
most. We confirmed that the MGRIT preconditioning
improves the convergence of PinST solvers and is also

effective in terms of execution time.

Ja

—#+— time marching
MGRIT
~¥— MGRIT-GMRES

1004

Number of time steps

Fig.20 Elapsed times in a weak scaling

2) PinST-Exp/Imp
In 2018, we proposed the PinST-Exp/Imp, which

discretizes the fine-level by an explicit method and the
coarse-level by an implicit method. We observed that
the convergence deteriorates and the number of
iterations increases the fine-level

as parameter

approaches the CFL condition in the linear diffusion

13

problem. We tried to improve the convergence by using
MGRIT of PinST-Exp/Imp as a preconditioner. Table 5
shows the number of iterations in a two-dimensional
linear diffusion problem with a fixed analysis region by

varying the time-step width and spatial mesh width.

Atz for this problem is 0.25,

Since the CFL condition ¢= v

it can be seen that the number of iterations of MGRIT
increases as the ratio ¢ approaches 0.25. In contrast,
MGRIT preconditioning reduces the number of
iterations from 402 to 329 at most. We confirmed that
the MGRIT preconditioning is also effective in PinST-

Exp/Imp in terms of the number of iterations.

Table 5 Number of iterations with various diffusion
coefficients.

N, 256 128 120 116 114

N =16 c = At/Ax? 0.110 | 0.221 | 0.236 | 0.245 0.249
* MGRIT 12 13 23 38 49
MGRIT-GMRES 12 13 22 35 44
N, 1024 | 768 512 484 482

N =32 ¢ = At/Ax? 0.117 | 0.157 | 0.241 | 0.2487 | 0.2497
* MGRIT 12 12 39 98 137
MGRIT-GMRES 12 12 29 87 120

N, 4096 | 2048 | 2000 1988 1986

N =64 c = At/Ax? 0.121 | 0.242 | 0.248 | 0.2496 | 0.2499
x MGRIT 12 36 115 292 402
MGRIT-GMRES 12 33 110 244 329

3) PinST-Explicit for 1D Advection [20]

We propose a multilevel parareal PinST (Parallel-in-

Space/Time) method that achieve scalability better than
that of the spatial parallelization method. The multilevel
parareal method was proven to achieve reasonable
approximation results for the one-dimensional
advection problem faster than that of a regular spatial
parallelization method with more than 8 processors.
Our target problem is to develop a PinST method for
explicit time-stepping schemes. There are two main
challenges to develop a PinST method for explicit time-
stepping schemes. First, explicit schemes have to satisfy
the CFL (Courant-Friedrichs-Lewy) condition in order
to converge. Secondly, since spatial parallelization is
very efficient with explicit schemes, it is difficult to

leverage more or even similar scalability with PinST

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures

Final Report for JHPCN Joint Research of FY 2019

methods.

The proposed multilevel parareal method is based on
the parareal method with the hierarchy of the MGRIT
(Multigrid Reduction-in-Time) method. The idea of the
multilevel parareal method is to achieve good initial
values from coarser levels and reduce the iteration
number of the parareal method in each level.

First, we construct multiple level similar to the
MGRIT method. Each level has a different time step
size for explicit time-stepping. The coarser girds have
larger time step sizes and the finer grids have smaller
ones. In order to satisfy the CFL condition, we also
coarsen the space grid with the same ratio of the time
step size changes.

Since we are coarsening the space grid, we have to
define the restriction and prolongation operators. We
define the restriction by picking up coarse points
directly, similar to the multigrid method, and we define
the prolongation by interpolating the update values of
neighbor coarse points.

Start from the coarsest two levels, we perform the
parareal method iterations until convergence. Then we
move to a finer level, perform the parareal iteration
again until convergence. Similarly until the parareal

iteration in the finest grid is converged.

Algorithm 2: Multilevel parareal (MPI parallelized)
Explicit time-marching on the coarsest level L.
for level | = L-1 to 1 do
for iterate until residual tolerance do
On current processor:
Solve on the current level yr= F(yj. tj, tjs1).
Solve on the coarsest level y. = G(y;. tj. tji1).
for Processor p = 1 to P do
Solve on the coarsest level

A= G0F b) + FilYE £ i) — GO £ 1)
end
end
end

Fig.21 The algorithm of the proposed multilevel
parareal method. The red functions are the low precision
solvers and the blue ones are the high precision solvers
of the parareal algorithm.

In order to further reduce the computation time, we
set smaller tolerance for the parareal iteration at coarser
grids, where the computation is cheaper.

Even with small iteration numbers, the proposed

14

multilevel parareal method has larger computation
complexity, and slightly larger communication cost.
However, with many time steps, the multilevel parareal
method has much fewer number of synchronizations to
perform compare to that of the spatial parallelization
method.

We apply the multilevel parareal method to the one-
dimensional advection example with the Lax-Wendroff
method as the explicit time-marching schemes. From
the numerical experiment we found that we could derive
decent results with not so small tolerances (average
tolerance 0.3) the error mainly occurs at the
discontinuous points, which is of our least interest.

We implement the code using C++ with MPI
parallelization. We conduct runtime experiments on
Oakbridge-CX supercomputer in the Information
Technology Center, the University of Tokyo. We
compare runtime results of our PinST method and the
spatial parallelization method with similar number of
space points and number of time steps.

MPI Runtime Comparison

® Lax-Wendroff ® Multilevel Parareal

08
04
02

Runtime

0.08

4 8 16 32 64

#MPI cores (#nodes)

Fig.22 MPI scability comparison between sequential Lax-
Wendroff method (parallelized in space domain) and multilevel
parareal method (parallelized in time domain).

Our method prove that it is possible to leverage
similar or even better scalability with PinST methods.
However, our current method could serve only as a fast
approximation. To achieve high precision as other
PinST methods, smaller tolerance and longer runtime is
expected. For future work, we would like to further

improve the robustness and the convergence of our

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures

Final Report for JHPCN Joint Research of FY 2019

method.

4) PinST-Explicit for 2D Compressible CFD [20]

We are working on applying the proposed multilevel

parareal PinST method on two-dimension compressible
CFD examples with explicit time-marching schemes.
We expect that two-dimension examples would perform
better as spatial parallelization gets more complicated
than that of the one-dimension examples.

As a first example, we are solving a compressible
flow around a circle. We solve the Navier-Stokes
equations (the density equation, the momentum
equation and the energy equation) with Lax-Wendroff
method as explicit time-marching scheme. We apply
time-stepping on each node values considering a dual
mesh around each node.

We have currently completed the code
implementation of the sequential solver and the MPI
parallelization of the sequential solver. We are moving
PinST

on to the implementation for the two-

dimensional CFD example.

Fig.23 Results of a supersonic simulation with 8,346
nodes and 38,400 meshes, Distribution of Mach number,
Min= 1.40, Re=10°

® MS-BMC-GS [5]

We propose a multiplicative Schwartz type block multi-
color Gauss-Seidel (MS-BMC-GS) [5] smoother for the
AMG method. The MS-BMC-GS smoother improves
the convergence rate and data-locality of the AMG
method. The smoother in AMG determines the

convergence rate and computational time of the AMG

15

method. A hybrid approach, which is using Gauss-
Seidel and weighted-Jacobi, and multi-colored Gauss-
Seidel is widely used as the smoother. However, these
smoother shows lower convergence rate or data-locality
compared with sequential Gauss-Seidel smoother. A
block multi-color Gauss-Seidel (Fig.24) is one of the
effective smoother that solve the problems of existing
smoother, and it shows the same convergence rate and
data-locality compared with sequential Gauss-Seidel.
MS-BMC-GS is a modified version of the BMC-GS,
and it further improves the convergence rate and data
locality. Although the proposed approach increases the

amount of computation, the effect of this negative factor

is minimized by an improved data locality.

.39
12,16,20

33,36
23,26,29

22,25,28 24.27,30 13,17,21
Fig.25 Example of a computational order of the MS-

BMC-GS(3) smoother

In detail, with MS-BMC-GS(a), we apply the «
times Gauss-Seidel (GS) iterations continuously to each
block that was applied a block multi-color ordering (Fig.
25). This approach improves the convergence rate
efficiently. Also, thanks to the size of the blocks as
smaller than the cache size, the continuous Gauss-

Seidel iterations are enough faster. In this study, we also

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures

Final Report for JHPCN Joint Research of FY 2019

discuss the impact of the strategy for constructing
blocks. As we mentioned above, we apply the multiple
Gauss-Seidel iterations. Therefore, load-balancing
among the blocks and relationships among elements in
each block have strong impacts on the convergence rate
and the effect of parallelization. Then, we create a
weighted graph from the coefficient matrices that
represents fine grid or coarse grid, and using a METIS
library for partitioning.

Fig.26 shows the effects of MS-BMC-GS and the
methodology for constructing blocks. For the numerical
evaluations, we used one node of a local system, which
has Xeon silver 4110. Then, we solved “G3 circuit” and
“Parabolic FEM” that are published on the Florida
sparse matrix collection. In this figure, lines and bars
show the number of iterations and computational time,
simultaneously. A "LEX" shows the result of the
partitioning with lexicographic order. "METIS P" and
"BALANCE" denote the result of the graph partitioning
using the METIS library with the non-weighted or the
Also, "WEIGHI1"

"WEIGHT2" shows the graph partitioning with the

vertex-weighted graph. and
edge-weighted graph. The difference between them is
how to calculate the weight of the edge. On the
"WEIGH1", we calculated the weight of the edge from
the non-zero elements of the coefficient matrix that
present a fine grid. On the "WEIGHT2", we calculated
the weight of the edge from a coarse grid. As shown in
Fig.24, we confirm that the MS-BMC-GS shows better
performance than the BMC-GS. We also find that the
methodology for constructing blocks has a strong
impact on the performance of MS-BMC-GS. In the best
case, MS-BMC-GS shows 18% faster than the BMC-
GS.

16

(a) Result with the G3 circuit

N
P

TN

Computational time ——=
Number of iterations
EX o

125
-

METIS_P=—=

BALANCE ===

e

WEIGHT1 ==

WEIGHT2 ===

—

BALANCE+WEIGHT1 ===
- —

BALANCE+WEIGHT2 ——

2

120

115

Time[s]
Number of iterations

110

0.5

0 0

BMC-GS MS-BMC-GS(2) MS-BMC-GS(3)

(b) Result with the Parabolic FEM

0.6 T 20 Computational time ==
Number of iterations
EPPY LEX ==
05k METIS_P =
116 BALANCE ==
114 g WEIGHT1 ——
0.4 % WEIGHT2 ==
_ — 112 & BALANCE+WEIGHT1 ==
= S BALANCE+WEIGHT2 ==
ig 0.3r ’102
£
.| 8 3
0.2r
16
14
011
12

0

BMC-GS MS-BMC-GS(2) MS-BMC-GS(3) ©

Fig. 26 Computational time and number of iterations
of AMG with the MS-BMC-GS smoother. (Bars show
the computational time and lines show the number of
iterations.)

6. Progress of FY 2019 and Future Prospects

This is a 2-year project in FY.2018 and FY. 2019, where
we do fundamental research and development, code
and evaluation of

optimization preliminary

performance and robustness in FY.2018, and
performance evaluation using real-world large-scale
applications in FY.2019.

This project was accomplished almost as originally

planned in the following areas:

Geometric Multigrid (GMG) for 3D Goundwater
Flow

Algebraic Multigrid (AMG, SA-AMG) for 3D Solid
Mechanics

PinST-TSC

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures

Final Report for JHPCN Joint Research of FY 2019

PinST-Explicit
Parallel

Algorithms (MS-BMC-GS, Parallel

Reordering/Coloring, Parallel Aggregation)

Although some of the works, such as implementation of
SELL-C-o, were not done yet, the works will continue
in the future.

We published 2 journal papers [1,2], and 4
conference papers with peer review [3,4,5,6]. Moreover,
1 journal paper [3] is under 2™ round review. Trip to
SC19 in Denver, CO for presentation of [4] was
supported by JHPCN.

Because this is an international project, international
collaboration is also an important part of the project.
Researchers from Japan, Germany and USA have been
working closely on certain topics, such as SELL-C-o,
MS-BMC-GS and Nera Kernel Vectors. We have been
holdings meetings for discussions during international
conferences, such as ISC-HPC 2019 (Frankfurt,
Germany, 2019.6), SPPEXA Final Workshop (Dresden,
Germany, 2019.10), 3rd French-Japanese-German
Workshop on Programming and Computing for
Exascale and Beyond (Tokyo, Japan, 2019.11), SC19
(Denver, CO, USA, 2019.11), SIAM PP20 (Seattle, WA,
2020.2). Members of ITC/U.Tokyo also visited
Lawrence Berkeley National Laboratory in September,
2019, and discussed on further research collaboration
including this topic.

Ryo Yoda (Kogakuin University) visited Prof.
Matthias Bolten (BUW) at Wuppertal, Germany for two
weeks in February 2020. This trip was supported by
JHPCN. They worked together for research and
development on PinST, and for revising the paper [3].

Although the project has completed successfully, we
also submitted a proposal for a new project from
FY.2020 to FY.2022, “Innovative Multigrd Methods II
(Leading-PI:: Akihiro Fujii (Kogakuin University), Co-
PI’s: Matthias Bolten (BUW) , Kengo Nakajima (The
University of Tokyo). The proposal was accepted for the

17

JHPCN project in FY.2020.

The new project basically takes over activities and
results in the first phase, and more focuses on PinST.

We aim to extend the results of our research project
as a library that will be available from JHPCN
supercomputers. Our target computers are Post-K
(Fugaku) supercomputer and BDEC system at the
University of Tokyo (operation starts at May 2021).

Therefore, we set the new project as 3-year one,
where we do fundamental research & development in
the first year, apply our methods to real world
applications in second year, and will publish the codes
and the results for other researchers to apply our
methods to their applications in the third year.

Efficiency and Robustness for GMG and AMG

» lst year: Each item in (a)-(d) in the research
purpose will be studied and developed by the
members.

» 2nd year: we will integrate the items (a)-(d)
and apply them to various applications

» 3rd year: Organize and publish the codes as
library.

* PinST:

» st year: (a) We will continue studying and
enhancing our methods. (b) At the same time,
we will try to apply our approaches to pHeat-
3D. We will survey other explicit time
marching applications for increasing case
studies.

» 2nd year: we will increase the test cases.

» 3rd year: Organize and publish the codes as

library.

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
Final Report for JHPCN Joint Research of FY 2019

7. List of Publications and Presentations

(1) Journal Papers (Refereed)

[1]

(2]

[3]

PR ELh, RS, EEHEE, SAr—7
TV - LERTRSA-AMGIEIZ AT T2 =T 1 —
T BV AERIH FEICET 25, 1§
WAH MG v Y a—T 4 VSV AT

2 (ACS) 12-3, 46-63,2019 (in Japanese)

Fujii, A., Kaneko, S., Tanaka, T., Iwashita, T.,

Time Segment Correction Method for Parallel
Time Integration, Journal of Information
Processing, 2019, Volume 27, Pages 822-830,
Released December 15, 2019, Online ISSN 1882-
6652

Yoda, R., Fujii, A,, Tanaka, T, Bolten, M

Nakajima, K., Multigrid Reduction in Time
Preconditioned Krylov Solvers for Linear Time
Integration Problems, Numerical Linear Algebra

with Applications (under 2" Round Review)

(2) Proceedings of International Conferences
(Refereed)

[4]

[5]

[6]

Nakajima, K., Gerofi, B., Ishikawa, Y., Horikoshi,
M., Parallel Multigrid Methods on Manycore
Clusters with IHK/McKernel, IEEE Proceedings
of 10th Workshop on Latest Advances in Scalable
Algorithms for Large-Scale Systems in
conjunction with SC19 (The International
Conference for High Performance Computing,

Networking, Storage, and Analysis), 2019

Kawai, M., Ida, A., Matsuba, H., Nakajima, K.,

Bolten, M., Multiplicative Schwartz-Type Block
Multi-Color Gauss-Seidel Smoother for Algebraic
Multigrid Methods, ACM Proceedings of the
International Conference on High Performance
Computing in Asia-Pacific Region, (HPC Asia
2020), 2020

Sakamoto, R., Kondo, M., Fyjita, K., Ichimura, T.,
Nakajima, K., The Effectiveness of Low-Precision

Floating Arithmetic on Numerical Codes: A Case

18

Study on Power Consumption, ACM Proceedings
of the International Conference on High
Performance Computing in Asia-Pacific Region,
(HPC Asia 2020), 2020

[7] Nakajima, K., Parallel Multigrid Method on
Multicore/Manycore Clusters, IXPUG (Intel
Extreme Performance Users Group) HPC Asia
2020, 2020

(3) International Conferences Papers (Non-

refereed)

[8] Nakajima, K., Parallel Multigrid with Adaptive
Multilevel hCGA on Manycore Clusters, Exascale
Computing Technology for Future CFD, 2019
KSIAM Spring Conference, Seoul, Korea, 2019

[9] Nakajima, K., Parallel Multigrid with Adaptive
Multilevel hCGA on Manycore Clusters, Extreme-
Scale/Exascale Applications China, Japan, World,
ISC High Performance 2019, Frankfurt, Germany,
2019 (Invited Talk)

[10] Nakajima, K., Parallel Multigrid with Adaptive
Multilevel hCGA on Manycore Clusters, MS12:
Recent achievements on numerical algorithms
and performance optimization for large-scale
scientific and engineering computing, IMG 2019:
International Multigrid Conference, Kunming,
China, 2019

[11] Nakajima, K., Innovative Methods for Scientific
Computing in the Exascale Era by Integrations of
(Simulation+Data+ Learning) (S+D+L):
Supercomputing in “Society 5.0”, Jornada
Universritaria de Supercomputo 2019 (El
Supercmoputo en la Tranformacion Digital)
(Guadalajara, Mexico) (Keynote Talk)

[12] Nakajima, K., An Innovative Method for
Integration of Simulation /Data/Learning in the
Exascale/Post-Moore Era, APCOM 2019: Asian
Pacific Congress on Computational Mechanics
(December 18-21, 2020, Taipei, Taiwan) (Semi-
Plenary Talk)

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures

Final Report for JHPCN Joint Research of FY 2019

[13] Nakajima, K., Parallel Multigrid Methods with
Adaptive Multilevel hCGA on Manycore Clusters,
MS1603: Parallel Programming Models,

Algorithms and Frameworks for Extreme
Computing & Big Data, APCOM 2019: Asian
Pacific Congress on Computational Mechanics
(December 18-21, 2020, Taipei, Taiwan)

[14] Iwashita, T, Nakajima, K., Shimokawabe, T.,
Nagao, H., Ogita, T., Katagiri, T., Yashiro, H.,

Matsuba, H., h3-Open-BDEC:

Innovative
Software Platform for Scientific Computing in the
Exascale Era by Integrations of (Simulation + Data
+ Learning) , HPC Asia 2020 (poster) (Fukuoka,
January 2020)

[15] Nakajima, K., Innovative Methods for Scientific
Computing in the Exascale Era by Integrations of
(Simulation+Data+ Learning), STAM Conference
on Parallel Processing for Scientific Computing
(PP20), MS25/36: Progress and Challenges in
Extreme Scale Computing and Big Data (Seattle,
WA, USA, February 12-15, 2020)

M., Multigrid for Shifted Systems

[16] Bolten

Appearing in Parallel-in-Time Integration, SIAM
Conference on Parallel Processing for Scientific
Computing (PP20), MS47/58: Parallel-in-Time
Integration Methods (Seattle, WA, USA, February
12-15,2020)

(4) Presentations at Domestic Conferences

(Non-refereed)

[17] R e E, &PERe - BB - SEEMESE
b Fik & T OISH, #24E B AF R LY

19

s (K'E, 20194:5H30H) (in
Japanese)

(18] H Bttt &, HHEfF=], Balazs Gerofi,)l
#, AM-hCGAEIC K 2 WAL EiE 115, 1§
WAAH P2 FE S (2019-HPC-170-19), Ak
H., dt¥fEiE, 2019 (in Japanese)

[19] BASEW, TEFE, BIFHZ, SA-AMGiA
(ZBT DRI EALD T2 DR =T
A —FN7 VI RIS 72005, 16
WAAB P2 FE S (2019-HPC-170-20), b
., dt¥fEiE, 2019 (in Japanese)

[20] Chen, Y.C., Nakajima, K., Parallel-in-Space/Time

Method for Explicit Time-Marching Scheme,
IPSJ SIG Technical Report, 2019-HPC-170-37,
Kitami, Hokkaido, Japan, 2019

R1] B EE, A=1a3727 7 AZMITEFILE
BTk, AARSHEES 2019 FEFEE, |
5, B, 2019

[22] ATEH, THEME, BIEEZ, 2R RR
SA-AMG {EIZRT =T 1 —F V7 f L
RIS 20198, E LB 22T TE
7 (2020-HPC-173-2), FLIE, AtifEiE, 2020 (in
Japanese) (FEFILHIL)

23] B EME, OREE—, 2P, AHAE, i
mi®, TERIEE, [REEEEL T 7Y r—v
a UPERE, TREULER 2T ZEHRE (2020-HPC-
174-5) (55 174 8] HPC #f%ts) (v 74
>,2020 45 H 13 H) (inJapanese) (inpress)

(5) Others (Patents, Press Release, Books etc.)
RZYHE L

