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Abstract  
Eigenproblem is one of essential numerical problems for several numerical 
simulations. Its accuracy, however, is not well-assured in many conventional 
numerical computations. Basic Linear Algebra Subprograms (BLAS) is a frequently 
used to perform linear algebra computations. Ensuring the accuracy of the 
computational results of BLAS operations is a still crucial problem now. Even in 
solving linear equations using LAPACK is also a typical example, because LAPACK 
is rich in BLAS operations, especially matrix-matrix multiplication (MMM) 
operations for solving linear equations. With respect to this background, we focus on 
the following three topics: (1) Developing an accuracy assured numerical libraries for 
eigenproblems; (2) Development of high-performance implementation and auto-
tuning (AT) technology for the developed accuracy assured numerical libraries; (3) 
Discussing an extension for non-liner problems based on obtained knowledge of 
accuracy assured algorithms. 
 

1. Basic Information 

(1) Collaborating JHPCN Centers  

Tokyo, Nagoya, Kyushu 

 

(2) Research Areas 

 Very large-scale numerical computation 

 

(3) Roles of Project Members 

 Prof. Katagiri: High-performance 
implementation of Osaki method for 
recent multicore CPUs, and applying 
auto-tuning technologies. 

 Prof. Hwang:  Non-linear algorithms for 
actual engineering problems. 

 Dr. Marques: Algorithms and 
implementations for eigenproblem. 

 Prof. Nakajima:  Sparse iterative 
algorithms for liner equation solvers, such 
as parallel preconditioners. 

 Prof. Ogita: Iterative refinement 
algorithm to assure accuracy of real 
symmetric eigenproblem.  

 Prof. Ohshima: GPGPU implementations.  
 Prof. Ozaki: Accurate MMM algorithm 

(Ozaki method) 
 Prof. Wang: Eigenvalue algorithms for 

actual engineering problems. 
 

2. Purpose and Significance of Research 

Eigenproblem is one of essential numerical 

problems for several numerical simulations. 

Its accuracy, however, is not well-assured in 

many conventional numerical computations. 

Basic Linear Algebra Subprograms (BLAS) is 

a frequently used to perform linear algebra 

computations. Ensuring the accuracy of the 

computational results of BLAS operations is a 

still crucial problem now. Even in solving 

linear equations using LAPACK is also a 

typical example, because LAPACK is rich in 

BLAS operations, especially matrix-matrix 

multiplication (MMM) operations for solving 

linear equations. 

1. We focus on the following three topics:  

 Developing an accuracy assured 

numerical libraries for eigenproblems;  

2. Development of high-performance 

implementation and AT technology for 

the developed accuracy assured 

numerical libraries;  

3. Discussing an extension for non-liner 

problems based on obtained knowledge 

of accuracy assured algorithms. 
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3. Significance as JHPCN Joint Research 

Project 

We have significant research results related to 

this project. The followings are summary. 

Accuracy Assured Algorithm for 

Eigenproblems: We have mentioned this. Prof. 

Ogita developed an algorithm for accuracy 

assured real symmetric eigenproblem. We use 

this algorithm to establish accuracy assured 

numerical library in this project. The algorithm 

is based on iterative refinement algorithm. 

Several tuning parameters for high-

performance implementations are including, 

such as eigen decomposition, MMM, stop 

criteria for iteration, etc. These are nice targets 

for adapting auto-tuning.  

Accurate Matrix-Matrix Multiplication 

(Ozaki Method): Prof. Katagiri developed a 

high-performance parallel implementation for 

Ozaki method with Prof. Ozaki and Prof. Ozaki. 

Ozaki method requires multiple MMMs after 

error-free transformation (See Fig. 1). 

Decomposed matrices after the error-free 

transformation (Split_A and Split_B in Fig. 1) 

make sparse matrices in some situation. We 

use sparse matrix operations for the multiple 

MMMs in this implementation to establish 

remarkable speedups (38.6x). This performance 

evaluation was done with the Fujitsu FX100 in 

Nagoya University, which is a K-computer type 

supercomputer.  

There are many tuning parameters for the 

implementations, such as criteria for dense and 

sparse operations, sparse implementations 

(sparse formats, sparse matrix-vector 

multiplications (SpMV), and sparse-sparse 

multiplications (SpMxSpM).) In addition, 

criteria between CPU and GPU computing is 

also important tuning parameters. These are 

targets for auto-tuning.   

Accuracy Assured Numerical Library for 

Linear Equations: Some research results, 

including high-performance implementation of 

Ozaki method, have been opened as opens 

source software (OSS). Please refer to UNC-

HPC homepage. 

(http://www.math.twcu.ac.jp/ogita/post-k/index.html)   

The current released libraries via the UNC-

HPC homepage are as follows: (1)LINSYS_VR: 

Verified Solution of Linear Systems with 

Directed Rounding; (2) LINSYS_V: Verified 

Solution of Linear Systems; (3) DHPMM_F: 

High-precision Matrix Multiplication (Ozaki 

method) with Faithful Rounding; (4) BLAS-

DOT2: Higher-precision BLAS based on Dot2; 

(5) OzBLAS: Accurate and Reproducible BLAS 

based on Ozaki scheme. 

  We make high performance library for 

accuracy assurance base on the UNC-HPC 

routines in this project. 

 

4. Outline of Research Achievements up to 

FY2018 

This year is the first year in this project. 

 

5. Details of FY2019 Research 

Achievements 

The topic is shown as follows: 

The Year 1 (FY2019): 

1） Topic 1: Performance evaluation of 

 

Fig. 1 Overview of Ozaki Method. 
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high-performance implementations 

for UNC-HPC libraries between 

multi-core and many-core CPUs and 

a GPU. 

2） Topic 2: Designing accuracy assured 

libraries for real symmetric 

eigenproblem.  

3） Topic 3: Discussing extension to non-

linear problems. 

 

 Results for the Topic 1 

To do the topic 1, we developed a new 

implementation for an accurate MMM (Ozaki 

Method) library, including the UNC-HPC 

library.  

 

i. Sparse Matrix-vector Multiplication 

(SpMV) Implementation for Ozaki 

Method 

We describe the calculation time of the 

SpMV routine in the Compressed Row 

Storage (CRS) and Ell-pack (ELL) formats in 

the CPU and GPU environments for a test 

matrix. 

The whole duration of the routine includes 

the error-free conversion time, duration of the 

change to the sparse matrix format, and 

actual calculation time. The error-free 

conversion time is “error_free”; the conversion 

time of matrix A to the sparse matrix format 

and the memory transfer time from the CPU 

to the GPU is “setA”; the SpMV routine time 

is “kernel”; the memory transfer time from the 

CPU to the GPU of the matrix B and from the 

GPU to the CPU of the matrix C is “SetB,C”; 

the duration of the remaining operations is 

given under “other”. 

Fig. 2 show that when the matrix size is 

10,000 in the CRS format, the GPU 

environment provides a shorter calculation 

time with the SpMV routine.  

 
Fig. 2. Execution speed of the SpMV routine 

with the format and ELL formats in the CPU 

and GPU environments for a test matrix with 

N = 10,000 in accurate MMM library.  

 

In the ELL format, when the matrix size is 

10,000, the GPU environment results in 

shorter calculation times with the SpMV 

routine. This is because when the matrix size 

is small, the cost of the memory transfer to the 

GPU device is large relative to the calculation 

time. However, as the matrix size increases, 

the cost of the memory transfer relative to the 

calculation time decreases. Also, when the 

matrix size is small, it is assumed that the rise 

time of the GPU pipeline cannot be ignored 

compared to the SpMV calculation time. 

The execution time of the entire routine in 

GPU execution achieved a maximum 30.9% 

reduction with the CRS format, and a 

maximum 37.7% reduction with the ELL 

format compared to CPU execution. 

 

ii. Sparse Matrix-Matrix Multiplication 

(SpMxSpM) Implementation for Ozaki 

Method 

We have developed an implementation of 

SpMxSpM with CRS format for Ozaki method 

in GPU environment. In this section, we 

evaluate performance of the SpMxSpM 

implementation for Ozaki method with 

cuBLAS. In addition, sparse matrix-matrix 
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(SpMM) implementation for Ozaki method 

with cuBLAS is also evaluated. 

Fig. 3 show that the performance with 

respect to varying matrix sparsity in N=10000.  

 

 

Fig. 3 Execution time between SpMM and 

SpMxSpM implementations for Ozaki 

method. X-axis is sparsity of input matrix. 

“*1” stands for SpMM implementation. “*2” 

stands for SpMxSpM implementation. 

 

According to Fig. 3, whole execution time 

can be reduced up to 11.9% by utilizing 

SpMxSpM routine in N=10000. 

See [8] for the details. 

 

iii. Accuracy Assured Linear Equation 

Solver 

(A) Iterative Refinement Procedure 

We check real answer of large-scale linear 

equations for liner solver with residual 

iteration refinement by accurate dot product 

(pseud quadratic accuracy). This experiment 

is using 1750,000 dimensions for linear 

equations. 2500 nodes (80,000 cores) of the 

Fujitsu PRIMEHPC FX100 in Nagoya 

University is used.  

The iterative refinement procedure is: (1) 

an approximate answer is obtained by using 

LU factorization; (2) A residual iterative 

refinement is performed.  

The result is as follows:  

 

 

(First Step) Residual Norm: 4.019007e-14 

(Second Step) Residual Norm: 0.000000e+00 

 

The above result indicates that the real 

answer is obtained with 2 step iterations. 

This also shows that the assured procedure 

we propose is a useful way for large-scale 

computations. 

 

(B) Solving Linear Equations 

We evaluate assured accuracy computation 

for solving linear equation. Given accuracy is 

improved by the iterative refinement 

procedure shown in (A). 

We set a real answer with (1,1,1,…,1)^T. 

2500 nodes (80,000 cores) of the Fujitsu 

PRIMEHPC FX100 in Nagoya University is 

used.  

The result is: 

 

(1 million dimension) Upper bound of error:  

1.111484e-16 

(1.5 million dimension) Upper bond of error: 

1.113360e-16 

 

The above result indicates that the obtained 

accuracy is almost full for double precision 

computation. Hence the accuracy assurance 

can be adaptable for very large-scale 

computations on distributed memory 

supercomputers.  

 

 Results for the Topic 2 

We made a proto type implementation of 

assured accuracy library for standard 

symmetric eigenproblem. 

PDSYEVD (a ScaLAPACK routine） is 

used for this implementation. For test 

matrix, a symmetric matrix with elements 

generated by uniform distribution [0, 1]. 
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The Fujitsu PRIMEHPC FX100 in Nagoya 

University is also used. 

 

i. Performance Evaluation (Varying Nodes) 

We set dimension of matrix to N=50,000.  

The performance of the prototype library is 

shown in Fig. 4. 

 

 

Fig. 4 Ratios of execution time (Tveri / Teig). 

Tveri  stands for verification time. Teig  stands 

for computation time of eigenvalues.  

 

According to Fig. 4, there is a scalability 

for the ratio. This means that the ratios of 

verification time to computation time of 

eigenvalue are getting smaller according to 

number of nodes. This is a nice result to 

adapt the library of accuracy assurance to 

several applications.  

 

ii. Performance Evaluation (Weak Scaling) 

In next evaluation, we fix number of 

dimensions per node, while number of nodes 

increases. This is weak scaling evaluation.  

Fig. 5 shows the result. 

 

 

Fig. 5 Weak Scaling Result. 

 

Fig. 5 shows that execution time for 

assured accuracy computation can be 

occupied up to 40%~50% to computation time 

of eigenvalues. This is acceptable ratio for 

large-scale computation. 

 

iii. Performance Evaluation (Accuracy) 

To do evaluation of computed accuracy, we 

set matrix dimension with N=500,000. By 

using PDSYEVD routine, we obtain  i-th 

eigenvalus from the smallest eigenvalue. We 

also calcuate  upper error bound from 

assured accuracy compuation for  to 

evaluate computed accuracy.  

The result is shown in Fig. 6. 

 

 
Fig. 6 Errors of computed eigenvalues to real 

answer. 
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Fig. 6 shows that upper bound of 

calculated error is 60% at the worst. This 

indicates that the calculated result is never 

included “duplicate eigenvalues” for the 

eigenproblem with dimension of 500,000.  

We cannot proof this without the 

techniques for accuracy assurance for the 

eigenproblem. Hence this is a remarkable 

result in actual eigen computations. 

 

 Results for the Topic 3 

To do extension to non-linear problems, we 

study multilevel Schwarz preconditioned 

Newton-Krylov algorithm to solve the 

Poisson-Boltzmann equation with 

applications in multi-particle colloidal 

simulation.  

The smoothed aggregation-type coarse 

mesh space is introduced in collaboration with 

the one-level Schwarz method as a composite 

preconditioner for accelerating the 

convergence of a Krylov subspace method for 

solving the Jacobian system at each Newton 

step.  

The proposed smoothed aggregation 

multilevel Newton-Krylov-Schwarz (NKS) 

algorithm numerically outperforms than 

smoothed aggregation multigrid method. 

See paper [1] for the details. 

 

6. Progress during FY2019 and Future 

Prospects 

All planned research topics during FY2019 

are finished. 

The followings are future prospects in 

FY2020. 

 

 Topic 1: UNC-HPC libraries between 

multi-core and many-core CPUs and a 

GPU. 

According to our results, we found 

several performance changes based on 

computer environments, such as CPU or 

GPU. In addition, sparsity of input matrix 

is also crucial factor.  

We need to add adaptive selection for 

several implementations of Ozaki method. 

To establish this, auto-tuning (AT) 

technology is one of promising ways. 

Hence, we will adapt AT techniques to 

selection of the implementations for Ozaki 

method in FY2020. 

 

 Topic 2: Designing accuracy assured 

libraries for real symmetric eigenproblem. 

We need to develop high performance 

implementation of the accuracy assured 

libraries for real symmetric eigenproblem 

toward to distributed memory 

supercomputers. In particular, adaptation 

of GPU computing is highly required. 

Developing this implementation is 

important future work in FY2020. 
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算ライブラリの運用に向けて」，大学 ICT 推進

協議会 2019 年度年次大会， AXIES2019 予稿集，
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Implementation on GPU for Accurate Matrix-

Matrix Multiplication Using Sparse Matrix 

Computations’, A Master Thesis, Graduate 

School of Informatics, Nagoya University, 

February 2020 (In Japanese) 

 


