jh190010-MDH

管楽器の大規模流体音響解析

髙橋 公也 (九州工業大学)

概要

本研究では、管楽器の発音機構の問題を、低マッハ数における流体音(空力音)の発生機構の問 題として捉え、その大規模解析を行う。楽器の繊細な発音機構を再現するためには、流体と音を同 時に再現可能な圧縮流体の高精度解析が必要となり、時空間的に大規模な計算となることから、多 くの計算機資源を必要とする。本研究では、3次元モデルを圧縮性 LES を用いて解析する。また、 2次元と3次元の違いを考慮しながら、圧縮性 DNS を用いた2次元モデルの厳密解析を行う。さ らに、遅延方程式モデルの解析を行う。遅延方程式モデルの利点は、精度は落ちるが複雑な形状を 持った大型楽器の再現が可能である点にあり、管体の形状や音孔の開閉の違いが発音機構に与える 影響の基礎解析を行う。3次元 LES 解析に必要な大規模並列解析の効率化とそれに伴うプレポス ト処理および可視化の問題を解決し3次元の流体音の発生機構の解析を行う。

1 共同研究に関する情報

1.1 共同研究を実施した拠点名

九州大学

1.2 共同研究分野

■超大規模数値計算系応用分野
 ■超大規模データ処理系応用分野

1.3 参加研究者の役割分担

高橋公也 (九州工業大学): 代表, 総括 小林泰三 (九州大学): 副代表, 大規模計算とプレポスト処理 小野謙二 (九州大学): 大規模計算と可視化 服部裕司 (東北大学): DNS を用いた圧縮流体解析 高見利也 (大分大学): 大規模計算 南里豪志 (九州大学): 並列計算の効率化 大島聡史 (九州大学): のpenFOAM の改良開発 緑川博子 (成蹊大学): 並列計算の効率化 岩上翔 (九州工業大学): DNS を用いた楽器の解析 田畑諒也 (九州工業大学): DNS を用いた楽器の解析 小岩屋寿晃 (九州工業大学): クラリネットの解析 岡田紘彰 (九州工業大学): オカリナの解析

2 研究の目的と意義

本研究では、管楽器の発音機構の問題を、低 マッハ数における流体音(空力音)の発生機構 の問題として捉え、その大規模解析を行う。楽 器の繊細な発音機構を再現するためには、流体 と音を同時に再現可能な圧縮流体の高精度解析 が必要になる。具体的には、ミリメートルオー ダーのジェットや渦を再現するための小さな格 子幅や音波の位相速度を考慮した小さな時間刻 みが必要となる。したがって、必然的に時空間 的に大規模な計算となり、多くの計算機資源を 必要とする。

本研究では、3次元モデルを圧縮性 LES を 用いて解析する。また、2次元と3次元の違い を考慮しながら、圧縮性 DNS を用いた2次元 モデルの厳密解析を行う。さらに、管体の形状 や音孔の開閉の違いが発音機構に与える影響を 解析するために遅延方程式モデルの基礎解析も 行う。3次元 LES 解析に必要な大規模並列解 析の効率化とそれに伴うプレポスト処理および 可視化の問題を解決し3次元の流体音の発生機 構の解析を行う。さらに、低マッハ数領域の圧 縮流体の計算に必要な OpenFOAM の開発改 良を行う。その成果を利用拠点に共有・提供す る。また、DNS の解析では、計算の効率化高 速化の検討を行う。

本研究の学術的な意義は、以下のとおりであ る。流体音の発生メカニズムは高マッハ数と低 マッハ数では異なる。高マッハ数の問題は航空 機騒音等の問題としてよく研究されているが、 流体音発生のメカニズムは完全には解決されて いない。一方、低マッハ数の流体音では流体音 源 (エッジトーン、エオルス音) に依存してそ の特性が変わることが予想される。さらに、低 マッハ数では、高マッハ数では不可能な高精度 解析が可能であり、レイノルズ数が低い場合に は2次元 DNS による厳密解析も可能である。 本研究では、3次元の管楽器モデルの LES 解 析を主体に2次元 DNS 解析も交えて行い、管 楽器の繊細な発音機構を低マッハ数特有の流体 音の問題として明らかにする点に学問的な意義 がある。

その実現には大規模並列計算の高速化が 必要であり、一次計算としての流体シミュレー ションの高速化と同時に、作業負荷が大きいポ スト処理の効率化が重要である。特に3次元の より詳細な状況を計算する際にはこのボトル ネックはより顕著になる。それを解決するため に、本研究課題では一次計算とポスト処理を連 成・連携させる手法の開発をこれまでの研究成 果をもとに引き続き行う。また、音孔の問題で 扱うトポロジー変化を伴う移動境界問題は、理 論的および応用的な観点からも難しい問題で あるが、工学的応用を見込んだ多くのシミュ レーション分野において重要な技術的な問題で ある。

3 当拠点公募型研究として実施した 意義

現在では比較的安価な PC においても 10 コ ア以上の CPU を搭載し、流体力学シミュレー ションもマルチコアの計算機で実行されること が多くなって来ている。しかし、膨大なステッ プ数を必要とする過渡現象の流体計算を3次 元で詳細に行うには、基盤センターや「富岳」 の様な大規模システムを利用せざるを得ない。 その場合の計算科学側から見える問題は、ポス ト処理環境の整備が未だ不十分な事である。し たがって、本研究課題で扱うような大規模一次 計算とポスト処理を連成・連携させる手法の研 究は、依然として必要とされている。汎用の流 体計算コードはこれまで商用のコードが多く、 ほとんどがブラックボックスのままで利用さ れていたが、最近になってオープンソース系の コードが広く利用されるようになって来た。そ のコードを利用し大規模並列化を行った時のポ スト処理までを含めた総合的な計算効率を評価 することは、次世代の超並列計算機を用いた時 の計算科学側が要求する実質的な計算効率を知 る上でも重要である。しかし、実際に大規模な 並列実行を実施し、その性能を評価するために は、大規模計算機のリソースを一定期間占有し て調整し、あるいは、性能測定を実施する必要 がある。その目的で一般に利用できる計算機シ ステムはほとんどないため、本研究課題の提案 し実施した。

4 前年度までに得られた研究成果の 概要

これまでの研究で主に OpenFOAM の2次 元圧縮性 LES を用いて以下の項目について明 らかにした。 (1) エアジェット楽器の解析

小型エアジェット楽器の2次元モデルを用いて エアジェット楽器 (エアリード楽器)の発振の 再現に成功し、エアジェット楽器の基本特性の 再現 (ジェットの流速と発振周波数の再現) に 成功した。また、3次元モデルの解析にも成功 している。楽器の基本特性の再現に成功したの は世界的にも初めてである。さらに、2次元モ デルを用いてオルガンパイプのフットの役割を 明らかにした。

(2) Howe のエネルギー推論

E縮性 LES と音響ソルバー FDTD を組みわ せ、Howe のエネルギー推論を用いた2次元モ デルの解析に成功し、音響的なエネルギーが唄 口のジェットのエッジに近い下流部分で主に発 生していることを明らかにした。この結果は、 先行研究の Howe のエネルギー推論をもちいた 実験的評価や Howe の理論的な予測とも一致す る。

(3) 音孔の問題

楽器の音孔の開閉の問題を扱うために、Open-FOAM の低マッハ数の圧縮性 LES ソルバー を移動境界問題が扱えるように改良し、2次元 モデルを用いてトポロジー変化を伴う音孔の完 全な開閉を再現することに成功した。この成果 は、シングルリード楽器のリード振動や金管楽 器の唇の振動の解析に応用可能である。また、 木管楽器の遅延方程式モデルを用いて音孔の開 閉と発振周波数の解析を行い、クラリネットの レジスターホールの機能の説明に成功した。

(4) DNS を用いた低マッハ数の圧縮流体の解析

服部らは、圧縮流体用の移動境界問題も含む DNSの開発に成功し、低レイノルズ数領域の エオルス音を厳密に再現できることを立証し た。岩上は、服部、髙橋、小林と協力して 2D エッジトーンの再現に成功した。

5 今年度の研究成果の詳細

以下に、項目別の研究成果を示す。

(1)LES を用いた 3 次元管楽器モデルの大規 模計算解析

この研究課題では、以下の5つの細項目の解 析を行った。

a) オルガンパイプのフットの解析: オルガン パイプには、フットと呼ばれるジェットを作り 出す空気溜がある。フットはヘルムホルツ共鳴 器として働き、それを管体共鳴周波数との関係 で決まる適切な形状にすると、安定な発振が起 きる。2次元モデルの解析データーから、安定 性解明の鍵となる、フット、ジェット、管体の 相対位相について解析を行いその関係を明らか にした^{1,11)}。特に、フットの形状が適切なも のと不適切なものとの違いを、位相関係から考 察した。また、3次元モデルのメッシュの作成 し、粗いメッシュのモデル(約7千3百万メッ シュ)を用いて予備計算を行った。その結果を 図1に示す。

b) Howe のエネルギー推論を用いた 3 次元小 型エアリード楽器の音響エネルギー発生領域 の解析: 解析には流体計算にくわえ FDTD 法 を用いた音響解析が必要である。そのために、 高次 FDTD 法の 1 種である FDTD(2,4) 法に Berenger の PML 吸収境界条件を導入し、マ ルチノード並列化を行い、良好な性能を得られ る事を確認した⁹⁾。さらに、LES を用いた小 型エアジェット楽器のモデル (約 1 億 1 千 8 百 万メッシュ)を構築し、LES を用いた流体計算 を行っている。図 2 は、唄口近傍の流速を可視 化したものである。これまでの予備的な成果の 発表をした^{11,14)}。

c) ヘルムホルツ共鳴器を共鳴体として持つ
 オカリナの3次元解析: 3次元モデル(約1億
 6千万メッシュ)の解析を数種類の流速で計算

図1 オルガンパイプの圧力分布

図3 オカリナの流速分布

図2 小型エアジェット楽器の唄口近傍の流速分布

し、実験データとの比較を行い発振が再現され ていることを確認した^{6,11)}。発振状態を可視 化したものを図3に示す。

d)木管楽器の音孔の開閉を再現:2次元モデ ルではあるが、2つの音孔を持つモデルの解析 を行い、音孔の開閉に伴う共鳴モードの安定性 の変化を再現した。その結果を図4に示す。ま たこれに関連した成果を国際会議等で発表した³⁾。

e) シングルリード木管楽器および金管楽器の マウスピース内の流体音響解析: クラリネット のマウスピースの3次元モデル(約1億6千 万メッシュ)の解析を行い、Lighthillの音源分

図4 2つの音孔モデルの流速分布

図5 ホルンの流速分布

布の計算し、音波の発生領域について考察した 5,11)。また、ホルンのマウスピースの3次元モ デル(約3千6百万メッシュ)の解析を行い、 マウスピース単体の共鳴振動を再現した。その 発振状態を図5に示す。

(2) DNS を用いた 2 次元管楽器モデルの厳密解析

音源となるエッジトーンの解析が終わり、原著 論文をまとめ現在査読過程にある。エッジトー ンの研究を通し以下のことが明らかになった。 まず、モード遷移を定量的に再現することで は、LES よりも DNS の方が優れていることが 明らかになった²⁾。次に、音響エネルギーは流 速の5乗に比例し、ジェットの揺らぎは流速の 3乗に比例することが明らかになった (図 6)。 したがって、音源と考えられるジェットと音波 の間に強い相関がある⁸⁾。これらの成果のもと に、2次元エアジェット楽器モデルのメッシュ を作成し、発振させることに成功している¹⁰⁾。 その結果を、図7に示す。現在、より精度の高 いメッシュの作成を行ない解析を始めた段階に ある。解析には、数ヶ月から半年程度の計算時 間が必要である。

(3) 管楽器の発音機構の遅延方程式モデルを用 いた基礎解析

クラリネットには、レジスターホールと呼ば れる音孔があり、これを開くと演奏音を1オ クターブと5度(ほぼ3倍音)あげることがで きる。レジスターホールは、実行管体長とレジ スターホールの位置が 1:2 1:4 の間で機能する (図 8(a))。現実のクラリネットに近いモデルを 用い、レジスターホールの機能の詳細な解析を 行なった。特に、ベルやマウスピース等を変え たときの管体形状の変化がレジスターホールの 機能に与える影響をついて明らかにした^{4,12)}。 図 8(b) は、ベルやマウスピースを考慮したと きの発振モードの相図である。黒の実線に囲ま れた部分でレジスターホールが機能している。 図には示さないがベルやマウスピースを取り 去ったモデルと比べると3倍音の発振がしやす くなることがわかった。

さらに、基礎解析において、発振を起こす非 線形写像と線形応答関数の関係の解析を進め た。非線形写像はマウスピースを含む音波の発 生源、線形応答関数は管体からの反射に対応す る。その結果、正負2つの遅延を持つ系では、 写像の性質の違いが発振条件に大きな影響を与

えることがわかった
$$^{13)}$$
。

(a)

図 6 DNS を用いたエッジトーンの解析 (a) 音響エネルギーの流速による変化 (b) ジェットの揺らぎの流速による変化

当初の予定にはないが、格子ボルツマン法を 用いて、小型オルガンパイプの外部音場との同 期現象の解析を行った⁷⁾。

6 **今年度の進捗状況と今後の展望**

全体としての進捗状況は、85%程度と判断される。各項目における進捗状況と今後の展望は

図 7 DNS を用いたエアジェット楽器の解析(a) 流速分布 (b) 圧力分布

以下の通りである。

(1)LES を用いた 3 次元管楽器モデルの大規 模計算解析

この項目の進捗状況は80%と判断される。こ の項目での共通の課題である可視化の問題を 完全に行うことができなかった。当初、3次元 データの可視化において、OpenFOAM 5.0 に よる出力データを直接 Paraview を用いて並列 可視化する予定だったが、大規模データのファ イル入出力やバージョンの相性に起因すると考 えられる、データの欠損やレンダリングに関す る不具合等が発生した。そこで、OpenFOAM による計算結果の vtk 化や、指定領域のデータ 書き出し、サンプル点を間引くことでのデータ

図 8 遅延方程式を用いたレジスターホール の解析 (a) 実行管体長の変化とレジスター ホールの位置 (b) 発振モードの相図: 黒い 線で囲まれた領域でレジスターホールが機能 している。

量の削減を行い、流速分布のボリュームレンダ リング等を実現した。なお、これらの処理は大 容量フロントエンドのメモリとストレージ環境 がなければ実現困難であった。今後の課題は、 OpenFOAM や Paraview などのバージョン依 存などのロックインを解いて安定したデータ解 析を行うことと、属人的で手間がかかる作業コ ストを削減して、流体音響計算に特徴的な音波 も含めた大規模な3次元楽器データの可視化を 実行することである (10% 減点)。

その点を除けば、a)-c),e)の課題においては、 ほぼ当初の計画通り実行することができた。d) の課題では、当初、3次元モデルの解析を行う 予定であったが、OpenFOAMの移動境界ソル バー rhoPimpleDyMFOAMの不具合のために 断念した。具体的な不具合は、3次元メッシュ 等の複雑なメッシュを扱うときに、予期せぬ メッシュの変形が起きることである。そのため に、複数の音孔の問題に切り替えて2次元解析 を行った (10% 減点)。

各項目の今後の課題は、以下のとおりであ る。a)の課題のオルガンパイプの解析では、精 度の高いモデルをまともに作成するとメッシュ 数が6億程度になるので、できるかぎりダイ エットしたモデルの構築を行うことが課題と なる。また、巨大なデーターを扱うプレポスト 処理が重要な課題になってくる。b)の課題で は、流体計算の結果をもとに FDTD を用いた 音響計算を効率よく行い、それらを組み合わせ て、HEC 理論に基づく音響エネルギー発生の 評価を行うことが今後の課題である。c)の課 題では、音孔を開けたモデルを構築しヘルムホ ルツ共鳴器における音の高さの変化について考 察するのが今後の課題である。d)の課題では、 引き続き複数の音孔が開いた時の発振状態の再 現性とその発音機構について検討する。また、 3次元モデルの移動境界問題の解決策を検討す ることが必要である。e)の課題では、ホルン のマウスピースの様々な共鳴状態について解析 し、Lighthill の音源分布等の計算を行い音波の 発生場所を特定するのが今後の課題である。さ らに、3次元移動境界問題が解決された場合に は、リード振動や唇の振動を取り込んだ、クラ リネットやホルンのマウスピースモデルの解析 を行うことが課題となる。

(2) DNS を用いた 2 次元管楽器モデルの厳密解析

エアジェット楽器のモデルの計算に時間がか かっているが (10% 減点)、当初の計画をほぼ 達成したので、進捗状況は 90% と考えられる。 今後の課題は、複数の流速でエアジェット楽器 の解析を行い、 エッジトーンとの違いを明ら かにすることである。 特に、ジェットの流速 と音響エネルギーの関係および Lighthill の音 源と音響エネルギーの関係を調べ、エッジトー ンと楽器の違いを明らかにする。また、可能で あれば、DNS の複数ノードでの並列化につい て検討する。DNS では空間的な陰解法を用い る為に、現状ではメモリーを共有できる1ノー ドで計算しているからである。

(3) 管楽器の発音機構の遅延方程式モデルを用 いた基礎解析

当初の計画をほぼ達成したので、進捗状況は 95%と考えられる。今後の課題は、原著論文の 執筆である (5% 減点)。遅延方程式モデルの解 析において、遅延構造 (管体の反射特性)と非 線形写像 (音源)の双方が発振モード (音の高さ と音色)の選択に複雑に関係していることが明 らかになってきた。その詳細を解明するために は、数値計算による大規模なパラメータ検索に 基づいた解析が必要である。

7 研究業績一覧 (発表予定も含む)

学術論文 (査読あり)

国際会議プロシーディングス (査読あり)

1) <u>K. Takahashi, S. Iwagami</u>, S. Tateishi, G. Tsutsumi, <u>T. Kobayashi</u>, <u>T. Takami</u>, "Antiphase synchronization between the oscillation in the pipe and that in the foot of a flue organ pipe", Proceedings of the 23rd International Congress on Acoustics, Aachen (2019) pp.5565-5572.

2) <u>S. Iwagami</u>, <u>T. Kobayashi</u>, <u>K. Takahashi</u>, <u>Y. Hattori</u>, "Reproducibility of Mode Transition of Edge Tone with DNS and LES", Proceedings of the 23rd International Congress on Acoustics, Aachen (2019) pp.5573-5579.

3) <u>T. Kobayashi</u>, D. Wakasa, <u>S. Iwagami</u>, <u>T. Takami</u>, <u>K. Takahashi</u>, "Numerical Approach for Aerodynamics around a tone hole of woodwind instruments: an example solving moving boundary problems with topologically change", Proceedings of the 23rd International Congress on Acoustics, Aachen (2019) pp.6483-6489.

4) <u>K. Takahashi</u>, K. Goya, S. Goya, G. Tsutusmi, <u>T. Kobayashi</u>, "Numerical study on the function of the register hole of the clarinet", Proceedings of International Symposium of Music Acoustics, Detmold (2019) pp.219-226 (**Invited abstract**).

5) <u>T. Koiwaya</u>, <u>S. Iwagami</u>, <u>T. Kobayashi</u>, <u>K. Takahashi</u>, "Numerical study on unsteady fluid flow and acoustic field in the clarinet mouthpiece with the compressible LES", Proceedings of International Symposium of Music Acoustics, Detmold (2019) pp.227-233.

 <u>H. Okada</u>, <u>S. Iwagami</u>, <u>T. Kobayashi</u>, <u>K. Takahashi</u>, "Numerical Simulation of Aerodynamics Sound in an Ocarina Model", Proceedings of International Symposium of Music Acoustics, Detmold (2019) pp.251-256 (**Invited abstract**).

7) <u>R. Tabata</u>, <u>T. Kobayashi</u>, <u>K. Takahashi</u>, "Numerical study of synchronization phenomena of an air-jet instrument using finitedifference lattice boltzmann method" Proceedings of International Symposium of Music Acoustics, Detmold (2019) pp.283-290.

8) <u>S. Iwagami</u>, <u>R. Tabata</u>, <u>T. Kobayashi</u>, <u>K. Takahashi</u>, <u>Y. Hattori</u>, "Numerical Study on Relation between the Jet Oscillation and Acoustic Pressure in Edge Tone", Proceedings of the Sixteenth International Conference of Flow Dynamics, Sendai, (2019), pp.660-661.

国際会議発表 (査読あり)

9) <u>Ryoya Tabata</u>, <u>Hiroko Midorikawa</u>, <u>Ki'nya Takahashi</u>: "Performance Evaluation of Acoustic FDTD(2,4) Method Using Distributed Shared Memory System mSMS", 2020 International Conference on High Performance Computing in Asia-Pacific Region HPC Asia 2020, pp.1-2, Fukuoka, Japan, Jan. 15-17, 2020, Abstract, Poster (2020.1) **国際会議発表 (査読なし)**

10) <u>S. Iwagami</u>, <u>R. Tabata</u>, <u>T. Kobayashi</u>, <u>K. Takahashi</u>, <u>Y. Hattori</u>, "Numerical Study on Air-jet Instruments Compared with Edge Tone", Proceedings of the Nineteenth International Symposium on Advanced Fluid Information, Sendai, (2019), pp.160-161.

国内会議発表 (査読なし)

11) 高橋 公也, 岩上 翔, 田畑 諒也, 岡田 紘彰,
小岩屋 寿晃, 小林 泰三, 高見 利也「エアジェット楽器の流体音響解析」, 音楽音響研究会資料
38 巻 6 号 (2019), pp.105-110

 <u>高橋公也</u>,合屋佳奈,合屋沙耶,堤元気, <u>小林泰三</u>,「クラリネットのレジスターホー ルの機能」,音楽音響研究会資料 38 巻 8 号 (2020) pp.21-26.

13) <u>高橋公也,小林泰三</u>,「ロジスティック写像
 を取り込んだ2重遅延系のモード選択則と分岐
 現象」, 19aPS-105, 日本物理学会第 75 回年次
 大会,2020 年 3 月, 名古屋大学.

その他 (特許, プレス発表, 著書等)

14) <u>高橋公也</u>,「管楽器の大規模流体音響解析」,
 カワイサウンド技術・音楽振興財団 機関誌
 「サウンド」35 号 (2020), pp.9-13.