
Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures 
Final Report for JHPCN Joint Research of FY 2018, May 2019 

1 

jh180029-NAJ 
Implementation of parallel sparse solver on  

CPU-GPU hybrid architecture 
 

Atsushi Suzuki（Cybermedia Center, Osaka University） 
 

Abstract  In numerical simulations of industrial and engineering problems that are 
modeled by system of partial differential equations, it is necessary to solve linear 
equations with large sparse matrices when some implicit scheme is used to resolve 
time evolution or to resolve a stationary state. Direct solver based on 
LU-factorization is the most robust for problems with highly nonlinearity, with 
heterogeneity, and with some physical constraints like incompressibility, i.e. 
divergence freeness. "Dissection" solver performs stable factorization with 
symmetric pivoting and achieves high efficient parallel computation on shared 
memory CPU architecture and also on vector CPU architecture. To exploit the 
advantage of GPU computational capability, we aim to migrate the code to 
CPU-GPU hybrid architecture. The main part of the migration is placed in a routine 
for block factorization of the dense sub-matrix in the bisection tree of the sparse 
matrix. In Dissection solver, there are three major subroutines, LDU-factorization 
with symmetric pivoting, DTRSM and DGEMM for computing Schur complement of 
the rest of the blocks. We will carefully assign these tasks on CPU and GPU with 
considering memory transfer between CPU and GPU and also memory movement 
inside of GPU to obtain high performance. 
 
 

1. Basic Information 
(1) Collaborating JHPCN Centers  

Cybermedia Center, Osaka University 
(2) Research Areas 

o Very large-scale numerical computation 
o Very large-scale data processing 
o Very large capacity network technology 
o Very large-scale information systems 

(3) Roles of Project Members 

- Atsushi Suzuki (Cybermedia Center,   Osaka 
University)  
Implementation of sparse direct solver on 
CPU-GPU hybrid architecture 
- Daisuke Furihata (Cybermedia Center, Osaka 
University) 
Principal contact of the research 
- François-Xavier Roux (Laboratoire Jacques- 
Louis Lions, Sorbonne Universite, France) 
Mathematical design of the algorithm for GPU 
specific architecture 
 
2. Purpose and Significance of the Research 

 In numerical simulations of industrial and 
engineering problems that are modeled by 
system of partial differential equations, it is 
necessary to solve linear equations with large 
sparse matrices when some implicit scheme is 
used to resolve time evolution or to resolve a 
stationary state. There are two major ways to 
solve these linear equations, i.e., direct method 
and iterative method. In general, the direct 
method is more robust to find an accurate 
solution than iterative method. However, even 
for the direct solver, we need to pay attention to 
use stable algorithm for factorization of the 
matrices from problems with highly nonlinear- 
ity, with heterogeneity, and with some physical 
constraints like incompressibility that is known 
as divergence freeness in mathematics. It is 
crucial to use appropriate pivoting strategy that 
is realized by finding the largest entry in 
absolute sense from non-factorized part and 
exchanging rows and columns of the matrix. 
 We have developed "Dissection" parallel sparse 



Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures 
Final Report for JHPCN Joint Research of FY 2018, May 2019 

2 

solver that runs on parallel computer with 
shared memory and with multi-core processors．
The developed code has competitive perform- 
ance with Intel Pardiso and MUMPS software 
packages. Advantages of "Dissection" code are 
using symmetric pivot strategy combined with 
postponing factorization, which is indispensable 
to factorize indefinite matrix and unsymmetric 
matrix with high condition number. This 
strategy is different from one of SuperLU-dist 
software package, where so-called static pivot 
based on weight matching method is applied 
before performing numerical factorization. This 
is thought more suitable to parallel implemen- 
tation but not robust for unsymmetric matrix 
with high condition number and factorization 
sometimes fails for indefinite matrix obtained 
from flow simulation. It is very important to use 
the same algorithm or mathematically equiva- 
lent algorithm in parallel version as serial 
computation for robustness of the solver. 
 During the last decade, GPU computation 
becomes a major HPC tool after introducing of 
CUDA platform by nVIDIA. The "Pascal" 
generation GPU, which is the most recent 
hardware accessible in the JPHCN resources, 
has two major progresses in the hardware. The 
first is faster memory by HBM2 that is 
balanced to number of arithmetic units, and the 
second is the direct connection interface 
between GPUs called as NVLink, which 
provides NUMA-style 64GB memory by four 
GPU cards. This hardware has a grate potential 
to perform efficient computation of some 
algorithms that are established to run on 
multi-core CPU system with rather low number 
of byte/flop, which means many arithmetic 
operations are able to be performed against one 
memory reading like DGEMM BALS level 3 
operation. 

 Multi-frontal factorization that is used in most 
sparse direct solvers, contains large number of 
sparse sub-matrices on the lowest level of the 
bisection tree and large dense matrices on the 
root and second level of the bisection tree. Three 
major sparse direct solvers, Pardiso, MUMPS, 
and Super-LU have not yet success in working 
with GPU architecture, though with some 
projects to replacing the runtime of factorizat- 
ion tasks on CPU only architecture by on 
CPU-GPU hybrid architecture started.  
 The size of sparse sub-matrices is too small to 
hide data transfer from CPU to GPU and the 
size of the dense matrix is too large in GPU 
memory. In this research project, the first 
problem is resolved by a strategy where 
computation of sparse sub-matrices is remained 
on CPU and the limitation of the size of large 
dense matrix will be relaxed by use of multi- 
GPU cards, and some modification to computa- 
tional algorithm in the existing code will be 
introduced to resolve the issue related in data 
migration between CPU and GPU memories. 

 
3. Significance as a JHPCN Joint Research 

Project 
 In viewpoint of developing of computational 
libraries, importance of sparse direct solver is 
not fully recognized due to large requirement of 
computational resources in comparison to itera- 
tive solvers. However, direct solver can be used 
as a preconditioner combined with a domain 
decomposition technique, which is known as 
additive Schwarz preconditioner. This precondi- 
tioner can drastically reduce iterations of 
GMRES. This is the first outcome of usage of 
direct solver in the context of application to 
iterative solver and the second one is to improve 
computational efficiency of local solver in the 
domain decomposition method, i.e., FETI 



Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures 
Final Report for JHPCN Joint Research of FY 2018, May 2019 

3 

method or iterative substructuring method with 
balancing Neumann-Neumann preconditioner. 
By accelerating factorization in local direct 
solver, it is possible to use less number of 
subdomains with larger DOF that brings stable 
convergence of domain decomposition method in 
heterogeneous problems. The fast direct solver 
will also improve performance of eigenvalue 
solver for the sparse matrix, e.g. shifted inverse 
method to find eigenvalue that is closed a given 
value, and Sakurai-Sugiura method and FEAST 
method to find eigenvalues in a certain interval. 
 Since direct sparse solver is an intermediate 
library between fundamental BLAS library that 
is heavily depending on the hardware, and 
numerical simulation application that would be 
independent of the hardware, it is worthy to 
research in the academic framework on high 
performance computation. 
 Nowadays GPU computation is said to be 
popular, but in reality, access to the computa- 
tional node with four "Pascal" GPU cards is only 
available in JHPCN hardware resources, espe- 
cially at the University of Tokyo, Tokyo 
Institute of Technology, and Osaka University. 
This is the main reason of application to the 
JHPCN project.  

 
4. Outline of the Research Achievements up 

to FY 2017 

This project started in FY 2018. 
 
5. Details of FY 2018 Research Achieve- 

ments  

1. Block factorization with forward substi- 
tutions of lower triangular and transposed 
upper triangular matrix with multiple right 
hand side 
 Elimination process is based on recursive 
computation of the Schur complement matrices, 

S22 = A22 - A21 A11-1 A12 with 2× 2 block 
decomposition of the matrix. Inside of the 
matrix at a certain bisection level, computation 
of the Schur complements is considered as 
rank-b update operation, where b denotes the 
block size that is introduced for parallelization 
of the LDU factorization of the dense matrix, 
and here A11 is b×b matrix and A22 is mb×mb. 
By using LDU factorization of A11, the 
computation of the Schur complement is 
written as  
S22 = A22 - (U1-T Π1-1A21T) D1-1 (L1-1 Π1-1A12),  
and then we can see there are three tasks in 
computation. 
(1) LDU-factorization of A11 with finding permu- 
   tation for the symmetric pivoting procedure,  
   A11=Π1(L1D1U1)Π1-1. 
(2) Solution of lower triangular matrix  
   Y12 = L1-1Π1 -1A12 and Z12 = U1-T Π1-1A21T and 
   computation of Y12' = D-1Y12 by diagonal 
   scaling with D1. Here Π1 is the permutation 
   obtained in (1). The former two solutions are  
   implemented as DTRSM of BLAS level 3. 
(4) Computation of A22 - Z12T Y12' that is imple- 
   mented as DGEMM of BLAS level 3. 
Fig. 1 shows tasks in the first and second 
elimination steps. Importance of above algo- 
rithm is recognized by two factors. One is 
symmetric pivoting is found with postponing 
strategy, which means LDU-factorization in 
block size b is stable. The other is that inverse 
of computation A11-1 is replaced by two forward 
substitutions, which is more stable than 
successive forward-backward substitution and 
multiplication of matrices written as 
S22=A22 - (A21Π1)(U11-1D11-1L11-1)Π1-1A12 
Our aim is migration of these steps from CPU to 
CPU-GPU hybrid architecture with LDU-facto- 
rization remained in CPU. It is natural to 



Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures 
Final Report for JHPCN Joint Research of FY 2018, May 2019 

4 

 
  Fig. 1 tasks in block factorization on CPU only 

 
migrate steps (2) and (3) on GPU because these 
operations are BLAS level 3, but to perform 
step (2), efficient data movement between rows 
of sub-matrix is necessary. Unfortunately, this 
task is still too complicated for GPU architec- 
ture because of coalesced memory access that 
conflicts to memory movement inside shared 
memory of GPU and sub-optimal operation of 
DTRSM as BLAS level 3 where the most inner 
loop is not constant.  
 

2. Modification of computational method of 
Schur complement 
 To avoid application of permutations to 
multiple right hand side (RHS), we change the 
strategy for computation of the Schur comple- 
ment. New strategy is written as 
(1) LDU-factorization of A11 with finding  
   permutation for the symmetric pivoting  
   procedure, A11=Π1(L1D1U1)Π1-1 . 
(2)' Computation of inverse of A11 by finding  
   W1 for set of linear systems 
   Π1(L1D1U1)Π1-1W1=I1 with identity matrix I1 

    whose size is b. 
(3)' computation of X12=W1A12 by DGEMM 
(4)' computation of A22 - A21X12 by DGEMM 
We can see step (2)' consists of forward and 

backward substitutions realized by DTRSM and 
exchange of data by rows. However, as 
mentioned in part one of this section, this 
procedure may be less accurate than the 
procedure with two forward substitutions 
because of propagation of floating point error in 
backward substitution phase. For the remedy, 
we introduce iterative refinement technique to 
improve the accuracy of the solution of the 
linear system. 
One-step iterative refinement computes the 
following: 
 (2)’’-a Computation of inverse of A11 by finding  
   W1 for set of linear systems 
   Π1(L1D1U1)Π1-1W1=I1 with identity matrix I1 

    whose size is b. 
 (2)’’-b computation of residual of the solution 
 W1 against I1 using DGEMM, 
   R1= I1 - Π1(L1D1U1)Π1-1W1 , 
 (2)’’-c finding Q1 for set of linear systems 
   Π1(L1D1U1)Π1-1Q1=R1 , 
 (2)’’-d updating the solution W1 using multiple   
 DAXPY as 
  W1= W1+ Q1 . 
 Since the factorized matrix A11 has moderate 
condition number because of small jump 
between successive diagonal entries, one-step 
iterative refinement is sufficient. If the jump 
becomes large enough, postponing procedure is 
applied and then size of matrix A11 is reduced, 
which ensures that condition number remains 
to be moderate. 
 Two more DTRSMs and one DGEMM are 
necessary to perform steps (2)’’, but we can 
reduce permutation operations in off-diagonal 
blocks described in the previous step (2). 
 Fig. 2 shows tasks in the first and second 
elimination steps. 
 The migration strategy of tasks from CPU to 
CPU-GPU hybrid is the following. (1) and (2)’’,  



Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures 
Final Report for JHPCN Joint Research of FY 2018, May 2019 

5 

  
 Fig. 2 tasks in block factorization on CPU-GPU   
       hybrid architecture 

 
which include finding maximum entries of the 
block matrix and data movements between 
rows and columns, are remained on CPU and 
(3)' and (4)' are preformed on GPU, where all 
computations consist of only DGEMM without 
data movement that was originated from 
pivoting strategy. 
3. Stored data in GPU and transfer to CPU 
 In our implementation of block factorization  
with pivoting on CPU-GPU hybrid architecture, 
GPU is used as an accelerator for DGEMM 
operations. A standard way of such acceleration 
of DGEMM operations implemented as follows. 
All memory are located in CPU and sending two 
matrices to GPU and receiving the result of one 
matrix. However by considering low memory 
bandwidth and large latency of between CPU 
and GPU, the block size of DGEMM needs to be 
enough large and a lot of DGEMM operations 
are necessary. We use opposite-direction strate- 
gy to store working data in block factorization. 
All data are stored in GPU and only data for 
sub-matrix of each diagonal block for 
LDU-factorization are transferred from GPU to 
CPU. This strategy drastically reduces 
movement of data and following estimation is 

hold.  
 Pascal P100 GPU consists of 56 stream 
multiprocessors and each processor has 32 FMA 
units that are running at 1.3GHz clock speed. 
Therefore the theoretical peak performance of 
one GPU card is about 4.6TFlop/s. Since CPU 
and GPU are connected by PCI-express bus, 
data transfer from CPU to GPU is 16GB/sec. 
Therefore, we can estimate the ratio of number 
of arithmetic to the speed of accessing to double 
floating point data (8 bytes) as 2,300 for CPU 
memory. We can see this ratio shall be attained 
by an appropriate block size b. In case of the 
dense matrix that is decomposed into (1+m)× 
(1+m) blocks, b×b matrix is received from GPU, 
LDU-factorization and computation of the 
inverse of the matrix are performed on CPU, 
and then data of inversed matrix is sent back to 
GPU. The size of input/output data is 2b2 and 
number of arithmetic is estimated as mb3 for 
(3)' DGEMM and 2m2b3 for (4)' DGEMM. 
Therefore, the ratio is evaluated as mb/2 + m2 b. 
By choosing b = 512 and from observation that 
m is usually far more than 2 in matrices closed 
to the root of the bisection tree, the ratio 2,048 
will be easily attained.  
4. Remained factorization process on CPU 
 In previous subsections, migration of tasks to 
CPU-GPU hybrid architecture for block factor- 
ization strategy in the dense sub-blocks is only 
described. As shown in Fig.3, there are another 
sub-blocks with sparse matrix in the elimina- 
tion tree. 

  
Fig. 3 bisection tree of the sparse matrix and    
        solvers for sub-matrices 



Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures 
Final Report for JHPCN Joint Research of FY 2018, May 2019 

6 

It is not efficient to perform factorization of 
sparse matrix with tri-diagonal structure on 
GPU, since the factorization contains pivoting 
procedure. Therefore, both factorization of 
sparse matrix task and dense sub-matrix whose 
size is less than 1024 should be remained on 
CPU. 
 
6.	Progress of FY 2018 and Future Prospects	
 The achievement on migration design to 
CPU-GPU hybrid architecture will be extend- 
able to the hardware with multi-GPU and 
NUMA-type 64GB shared memory. Thanks to 
new NVLink interface between GPUs, data 
transfer from GPU to GPU is 80GB/sec. 
Therefore we can estimate the ratio of number 
of arithmetic to the speed of accessing to double 
floating point data as 465 for GPU memory in 
multi-card configuration. This value can be 
attained with b=512 by the standard ratio of 
number of arithmetic against memory 
movement 2b3/b2=2b=1024. Therefore, it is 
expected to perform factorization of matrix with 
1M DOF and 100M nonzero elements by using 
sufficient memory on GPU. 
 It is clear that some modification to exiting 
code in the level of computational algorithm is 
necessary to obtain simplest arithmetic like 
DGEMM (matrix-matrix multiplication) on  
GPU computation. This is completely different 
approach against a naive replacing of some 
BLAS routines from CPU version to GPU 
version or just introducing GPU-aware runtime.  
 Here iterative refinement process to recover 
accuracy of the solution in the linear system is a 
key to fit the whole procedure to new imple- 
mentation.  
 The effectiveness of iterative refinement 
technique inside of the LDU-factorization 
procedure is reported in an international 

workshop on sparse matrix computation in this 
September. Appropriate pivoting procedure and 
iterative refinement technique are essential to 
obtain numerical solution of a semi-conductor 
problem that is described by the drift-diffusion 
system for electrostatic potential and electron/ 
hole concentrations inside the semi-conductor 
device. Advantage of Dissection solver to this 
kind of application is reported in two inter- 
national workshop on numerical simulation. 
 To obtain the efficient usage of stream multi- 
processors of GPU, it is necessary to use CUDA 
streams that can hide the latency of memory 
copies between CPU in combination of our own 
runtime routine written by C++11 thread class. 
Usage of this new facility of CUDA architecture 
and library and modification of own runtime 
routine are argent issues in very near future. 
 
7．List of Publications and Presentations  

(1) Journal Papers 
(2) Conference Papers 
(3) Oral Presentations 

1.  A. Suzuki, F.-X. Roux, “Dissection solver for    
   higher precision arithmetic by inner    
   iterative refinement”, 27th Sep. 2018,     
   Sparse Days 2018, CERFACS, Toulouse,   
   France. 
2.  A. Suzuki, “Dissection sparse direct solver  
   for indefinite finite element matrices and  
   application to semi-conductor problem”, 13th  
   Dec. 2018, The 10th tutorial and workshop  
   on FreeFem++, LJLL UPMC, Paris, France. 
3.  A. Suzuki, “Mixed finite element solution of  
    a semi-conductor problem by Dissection  
    sparse direct solver”, 30th Mar. 2019,  
    Taiwan-Japan joint workshop on inverse  
    problems and related topics, Kyoto 
    University, Kyoto, Japan. 
(4) Others 


