
Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
Final Report for JHPCN Joint Research of FY 2018, May 2019

JH180012-NAHI
Hierarchical Low-Rank Approximation Methods

on Distributed Memory and GPUs
 

Rio Yokota（Tokyo Institute of Technology）	

Hierarchical low-rank approximation methods such as H-matrix, H2-matrix, and
HSS can compress a dense matrix with O(N2) elements into a hierarchical matrix
with O(N) elements. By using such compressed matrices it is possible to perform
matrix-matrix multiplication, LU decomposition, and eigenvalue computation in
near-linear time. They are most commonly used in boundary integral problems
where the matrix to be solved is dense. Hierarchical matrices can also be applied to
Schur complements that arise in sparse direct solvers, so their applicability extends
to fluid, structure, and electromagnetic simulations. However, these hierarchical
algorithms are rather new and highly optimized implementations do not exist at the
moment. A highly optimized distributed memory GPU implementation is needed to
extract the potential parallelism of these methods.

1. Basic Information
(1) Collaborating JHPCN Centers

The University of Tokyo
Information Technology Center

Tokyo Institute of Technology
Global Scientific Information and Computing
Center

Hokkaido University
Information Initiative Center

Kyoto University
Academic Center for Computing and Media
Studies

(2) Research Areas
☑ Very large-scale numerical computation
□ Very large-scale data processing
□ Very large capacity network technology
□ Very large-scale information systems

(3) Roles of Project Members
Rio Yokota (Tokyo Institute of Technology)
Low-rank approximation using FMM and its
GPU-MPI implementation

Ichitaro Yamazaki (University of Tennessee)
Development of distributed memory runtime
–ParSEC and blocked BLAS library for GPU
–block MAGMA

Akihiro Ida (The University of Tokyo)
Feature extension of hybrid MPI/OpenMP
H - m a t r i x c o d e – H A C A p K , a n d i t s
integration with ParSEC and block MAGMA

Takeshi Iwashita (Hokkaido University)
Application of HACApK to boundary
integral solvers for electromagnetics, and
optimization of H-matrix-vector product

Takayuki Aoki (Tokyo Inst i tute of
Technology)
Application of HACApK to Poisson solvers
for multiphase flows

Satoshi Oshima (Kyushu University)
GPU implementation of HACApK and
integration with MAGMA

Taku Hiraishi (Kyoto University)
Dynamic load-balancing of HACApK

Kengo Nakajima (University of Tokyo)
Extend capability of HACApK within the
ppOpen-HPC framework.

Jack Dongarra (University of Tennessee)
Development of distributed memory runtime
–ParSEC and blocked BLAS library for GPU
–block MAGMA

2. Purpose and Significance of the Research
 H-matrices can reduce the arithmetic
complexity of dense matrix-multiplication
and factorization from O(N3) to O(Nlog2N)
but still attain high Flop/s on GPUs by
making use of batched BLAS operations.
Conventional fast algorithms with low
arithmetic complexity such as FFT, sparse
linear algebra, and multigrid methods have

!1

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
Final Report for JHPCN Joint Research of FY 2018, May 2019

low arithmetic intensity and are memory-
bound on most modern architectures.
Conversely, methods with high arithmetic
intensity like dense linear algebra and N-
body methods can remain compute-bound
on modern architectures, but tend to have a
high arithmetic complexity and waste many
Flop/s. H-matrices have a rare combination
of high arithmetic intensity and low
arithmetic complexity, which makes them an
interesting alternative to many existing
algorithms on future architectures.
 H-matrices were initially applied to
boundary integral problems in electro-
magnetics, seismic, and fluid simulations.
However, H-matrices have recently been
growing in popularity in new fields that can
benefit from approximate dense linear
algebra operations such as machine learning
and stat is t ics/big data . The broad
applicability of H-matrices makes it a
worthwhile algorithm to heavily optimize
on many-core and accelerator architectures.
 One of the goals of this project is to
facilitate the transition to the algorithm of
the future, by providing a highly
optimized H-matrix library that users can
simply call from their existing framework.
An important aspect of this approach is
that our code will be optimized on CPU,
GPU, and Xeon Phi, which represents the
range of architectures for JHPCN
platforms during the coming years.

3. Significance as a JHPCN Joint Research
Project  
 Each member of this project has different
expertise, all of which are essential for the
development and verification of a high
performance H-matrix library. R. Yokota is
the developer of exaFMM, which is a highly
scalable and GPU equipped FMM code have
the same data structure as an HLRA code. A.
Ida and T. Iwashita are developers of
HACApK – a hybr id MPI -OpenMP
implementation of the HLRA. T. Hiraishi has
experience in load-balancing for distributed
memory H-matrix codes. I. Yamazaki and J.
Dongarra are developers of dense linear
algebra libraries such as MAGMA and
PLASMA. T. Aoki has expertise in large scale
fluid dynamics simulations that make use of
distributed memory and GPUs. S. Oshima
has expertise in tuning solvers for GPUs and
Xeon Phi. K. Nakajima has expertise in

parallel preconditioned iterative solvers and
their application in CFD with AMR. The
combination of these expertise is necessary
for achieving the goals mentioned above.
 Furthermore, each member already has
highly optimized code for each component,
which gives us an advantage over other
groups that are writing an H-matrix code
from scratch. There are a few existing H-
matrix implementations, but they are limited
to shared memory and have not been ported
to GPUs. To our knowledge, HACApK is the
only multi-GPU H-matrix code available at
the moment. This could only have been done
through a JHPCN international collaboration
between the experts in each area.

4. Outline of the Research Achievements up
to FY2017

4.1	 H-matrix-vector multiplication on multi-
GPUs

 The present JHPCN project “Hierarchical
Low-Rank Approximation Methods on
Distributed Memory and GPUs” is
currently in its third year. The first year
(FY2016) focused on porting the HACApK
code to GPU and using it to perform the
matrix-vector multiplication inside a
GMRES solver.

The GPU implementation of HACApK was
achieved through the use of MAGMA. Since
one of the developers of MAGMA – Ichitaro
Yamazaki was a collaborator in this project,
the integration of MAGMA with HACApK
was done in a very short amount of time. We
were therefore able to have a multi-GPU
version by the end of FY2016.
 The performance of HACApK on multi-
GPU is shown in Figure 1, where ``Comp” is
the computational kernels, ``Copy” is the
CUDA memory copy time, ``Comm” is the
M P I c o m m u n i c a t i o n . T h e M P I
communication time eventually becomes the
bottleneck because the mat-vec computation
part takes very little time on the GPU.
 During FY2017, we have made significant
progress in the use of batched MAGMA
with HACApK, and i ts mult i -GPU
implementation. We have validated its
performance by applying it to the matrix-
vector multiplication in a BiCGSTAB solver.
Though the low-rank compression reduces
the cost of the matrix multiply, in many
cases, the BiCG’s iteration time is still
dominated by this H-Mat-Vec.

!2

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
Final Report for JHPCN Joint Research of FY 2018, May 2019

Figure 1. Performance of BiCGSTAB using
HACApK for the mat-vec on multiple GPUs.

 To reduce the iteration time using a
distributed-memory computer, HACApK
distributes the contiguous, but not disjoint,
rows of the matrix among the processes.
Then, each process performs HMVM with
its local submatrix. With this parallelization
scheme, the only required inter-process
communication is the all-gather needed after
HMVM to form the global vector on each
process (using MPI_Allgatherv).
 This parallelization scheme is motivated by
two performance properties of the solver: 1)
the BiCG’s computation time is dominated
by HMVM, while the time needed for the
remaining vector operations is insignificant
in the computation time and 2) the
redundant computation of the vector
operations avoids the global all-reduces
needed to compute the six dot-products for
each BICG iteration, which can be much
more expensive compared with the arith-
metic operations. Hence, by redundantly
performing the vector operations, this
parallelization scheme aims to balance out
two conflicting performance factors: distri-
buting the computation with a minimum
inter-process communication.
 We conducted all the experiments in double
precision, and used the matrices from
electrostatic field simulations with perfect
conductors of two particular shapes:
• Sphere: pairs of perfect conductors with

the shape of a sphere. For each pair, one
sphere has its electric potential set to be 1
Volt, while the other has the electric
potential of −1 Volt. We use the boundary
value of 0 Volt at infinity and analyze the
induced electrical charge on the surface of
the spheres.

• Human: perfect conductors with the shape
of a humanoid who is standing on a
uniform 2D grid on a uniform electric

Figure 2. Block sizes in test matrix ``100ts”

field. The surface of the humanoid is
divided into 2, 359, 680 triangular elements
and the induced electrical charge on the
humanoid’s surface was calculated using an
indirect BEM with a single layer potential
formulation and step functions as the base
function for the BEM.
Table 1 lists our test matrices. The large-

scale matrices 8ms and 20ms were used for
the inner-iteration to precondition the linear
system. All of the compressed blocks have
rank one and we fixed the number of inner
iterations to be 20 for our experiments.
Figure 2 shows the sizes of the blocks in the
matrix 100ts. We see a wide range of the
block sizes where all the blocks on the
diagonal are square and dense, while off-
diagonal blocks can be either dense or
compressed and are either tall-skinny or
wide-short. To utilize the GPU, each process
divides its local dgemv tasks into several
batches (e.g., a batch with a fixed number of
dgemv’s), and then calls dgemv_batched for
each batch. dgemv_batched can execute
dgemv’s with variable matrix sizes in a
single kernel launch. However, the
performance of dgemv_batched can be
much lower than its fixed-size counterpart.

T a b l e 1 . T e s t m a t r i c e s w h e r e
“compression%” is the ratio of the total
number of numerical values in the
compressed matrix over nlog2(n).

!3

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
Final Report for JHPCN Joint Research of FY 2018, May 2019

Figure 3. Matrix 100ts sorted by the number
of rows

Figure 4. Matrix 100ts sorted by number of
rows, and then by number of columns within
group.

This is especially true when there is a wide
range of matrix sizes in the single batch. In
order to improve the performance of
dgemv_batched, we examined several
schemes to sort the blocks of A, on which
dgemv’s operate. In Figure 3, the blocks
were sorted in the ascending order of their
numbers of rows, and in Figure 4, we first
grouped the blocks according to the number
of rows (the k-th group contains the block
with the number of rows in the range
between 8(k − 1) + 1 and 8k), and then we
order the blocks in the same group
according to their numbers of columns.

Figure 5. Sorting scheme of Figure 3 with
fixed batch count.

Figure 6. Sorting scheme of Figure 4 with
fixed batch count.

 Figures 5 and 6 show the effects of these
two sorting schemes on the kernel
performance for the matrix 100ts. The figure
also shows the performance of the fixed-size
batched kernel for each block size, which we
consider as the upper bound on the
performance of the variable-size kernel. We
clearly see that the performance can be
significantly improved by properly sorting
the blocks (speedups of up to 2.5×) and the
variable size kernel may obtain the
performance closer to that of the fixed-size
kernel.

!4

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
Final Report for JHPCN Joint Research of FY 2018, May 2019

(a)Strong scaling 100ts (b) On 8 nodes

Figure 7. Performance on Tsubame-3. The
blue markers show the solution time with
original HACApK without GPUs, while the
bars are with the GPUs.

(a)Strong scaling 100ts (b) On 8 nodes

Figure 8. Performance on Reedbush-H. The
blue markers show the solution time with
original HACApK without GPUs, while the
bars are with the GPUs.

 Figures 7 and 8 show the effects of the GPU
kernels on the BiCG performance on
Tsubame-3 and Reedbush-H, respectively.
For the performance without the GPUs, we
bind each process to a socket and launch one
OpenMP thread on each of the available
cores of the socket. We found this process/
thread configuration typically gives the best
performance of the hybrid MPI/OpenMP
implementation. With the GPUs, we launch
one process per GPU (i.e., four or two
processes per node on Tsubame-3 or
Reedbush-H). The figures clearly show that
the GPUs have reduced the iteration time
significantly, obtaining the speedups of
about 4.2× and 4.5× on eight nodes of
Tsubame-3 and Reedbush-H, respectively (in
Figures 7(b) and 8(b)).

Figure 9 Illustration of popular low-rank
structures generated for the same problem:
(a) general H-matrix and its conversion to
(b) Hierarchically Off-Diagonal Low-Rank
(HODLR) layout, (c) Block Low-Rank (BLR)
layout, and (d) lattice H-matrix layout.
Blocks painted in deep red show dense
submatrices, and blocks in light red indicate
low-rank submatrices.

4.2	 H - m a t r i x L U - d e c o m p o s i t i o n o n
distributed memory

 We propose a novel method to parallelize
the factorization of a hierarchical low-rank
matrix (H-matrix) on distributed memory
computers. H-matrix factorization is much
more difficult than the parallelization of a
dense matrix factorization due to the
hierarchical block structure of the matrix,
and it is much more difficult than the H-
matrix vector multiplication due to the
dataflow of the factorization. Getting rid of
the hierarchy, the Block Low Rank (BLR)
f o r m a t n o t o n l y s i m p l i f i e s t h e
p a r a l l e l i z a t i o n , b u t a l s o i n c re a s e s
concurrency. However, this comes at a price
of loosing the near linear complexity of the
H-matrix factorization. In the present work,
w e p r o p o s e a “ l a t t i c e H - m a t r i x ”
factorization that combines the parallel
scalability of BLR with the near linear
complexity of H-matrix. To the extent of our
knowledge, there have been no such
attempts to balance the complexity and
concurrency of two structured low-rank
approximation methods.

!5

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
Final Report for JHPCN Joint Research of FY 2018, May 2019

 We can generate any of the low-rank
structures shown in Figure 9 by controlling
the admissibility condition and the branch
truncation of the block cluster tree during
the construction of the H-matrix. Hence, all
structured low-rank matrices can be
regarded as special types of the H-matrices,
as illustrated in Figure 9 for a given
problem.
 Each partitioning structure has different
pros and cons. For instance, the H-matrix is
the most general low-rank matrix structure,
and it is an effective way of compressing the
matrix with small numerical ranks.
However, it usually has a complicated
partitioning structure as shown in Figure
9(a), which makes it challenging to perform
some matrix operations on a distributed-
memory computer (e.g. LU factorization).
 To improve the parallel scalability of the
matrix operations, simpler partitioning
structures have been proposed. For instance,
by setting a weak admissibility condition,
we can construct the partitioning structure
shown in Figure 9 (b), which can be seen in
the Hierarchical Semi-Separable (HSS)
matrix or in the Hierarchically Off-Diagonal
Low-Rank (HODLR) matrix. Compared
with the H-matrix structure, this structure is
simpler and more convenient for per-
forming certain matrix operations on
distributed-memory. However, this matrix
structure assumes a weak admissibility
condition, where all off-diagonal blocks are
assumed to be low-rank. When the weak
admissibility condition is applied to a 3D or
higher dimensional problem, this structure
leads to a higher asymptotic complexity due
to the larger ranks of off-diagonal blocks.
 Block Low Rank (BLR), shown in Figure
9(c), is another simpler matrix structure.
Though the construction of the BLR matrix
does not require the block cluster tree used
to construct the H-matrix, it can be
constructed by truncating all branches of the
cluster tree at a certain depth level. The
partitioning structure of BLR is then given
by the induced blocks in the block cluster
tree. The admissible condition is verified on
each block after the structure is defined. The
memory complexity of the BLR matrix is
O(n1.5) and is higher than O(nlogn) of the H-
matrix. However, the BLR matrix is a simple,
nonhierarchical, and effective low-rank
layout, especially for the distributed-

memory. In particular, the BLR structure has
the block layout similar to the 2D block
layout used in many dense matrix
operations, and it can use many of the high-
performance optimization techniques
developed for the dense matrix operations.
 Figure 9 (d) shows the partitioning
structures of the lattice H-matrix that we use
in this paper. It combines the structures of
BLR with the H-matrix by introducing the
lattice structure on top of the H-matrix. In
other words, the lattice H-matrix utilizes the
H-matrix format for each block of the BLR
matrix. These lattices are then distributed
among the processes in a 2D block cyclic
fashion. It is designed to balance the
advantages of the H and BLR matrices: the
high compressibility of the H- matrix, which
reduces the memory and computational
costs, and the parallel scalability of the BLR
matrix. Using the lattice H-matrix, the
complex matrix operations originating from
the H-matrix structure are performed using
the threaded computational kernels.
 Taken a large enough lattice size, the lattice
H - m a t r i x c a n re d u c e t h e m e m o r y
complexity from O(n1.5) of the BLR matrix to
O(nlogn) of the H-matrix. At the same time,
t h e l a t t i c e m a t r i x h a s t h e s a m e
communication pattern as the BLR matrix,
and it can utilize the high-performance
parallel algorithms and the efficient
communication schemes developed for the
dense matrix operations.
 We conducted our experiments on the on
the Reedbush-L supercomputer at the
University of Tokyo, and the TSUBAME3.0
supercomputer at the Tokyo Institute of
Technology, and also the Edison super-
computer at the National Energy Research
Scientific Computing Center (NERSC). We
used Intel MPI compiler mpiifort and
mpiicpc of version 18.1.163. On all systems,
the code was compiled using the -O3
optimization flag, and linked to sequential
MKL version 2018.1.163.
 We first study the performance of the
threaded BLR LU (BLU) and threaded H-
matrix LU (HLU) factorization on the
shared-memory CPUs. One of the critical
parameters that affect the factorization
performance is the leaf size. Hence, we first
seek for an optimal leaf size that obtains the
shortest factorization time.

!6

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
Final Report for JHPCN Joint Research of FY 2018, May 2019

Figure 10 Effects of the leaf sizes on the
factorization time, and the computational
and storage costs of the factorization.

 Figure 10 shows the effects of the leaf size
on the factorization performance. A larger
leaf size tends to increase both the
computational and storage costs of the BLU
factorization, but it also improves the
performance of the BLAS and LAPACK
subroutines used for the local computation.
In many cases, BLU obtained the fastest
factorization time using the leaf size that is
larger than that obtained the minimum
storage or computation. The optimal leaf
size also tends to increase with the increase
in the matrix dimension. In contrast, HLU’s
factorization time was less sensitive to the
leaf size. Overall, for our test matrices, the
leaf size of with k = 5 was a good
choice for BLU, and that is what we use for
the rest of the experiments.
 For HLU, we use the fixed leaf size of 300.
With these choices of the leaf sizes that
obtain the near-optimal performance of each
algorithm, BLU needed a much larger leaf
size and had much higher storage and
computational costs than HLU, especially
for a large matrix.
 Figure 11(a) shows the relative flop counts
for different phases of the factorization. We
see that the flop count is dominated by the
trailing submatrix update that is well suited
for the parallelization. Figure 11(b) and 11(c)
show the resulting thread scalability of the
two factorization algorithms. Since we used
a fixed leaf size for HLU, its scalability was
lower than BLU’s for a small matrix. For
instance, for the matrix 1ts, there were only
three diagonal blocks for HLU. On the other
hand, for a large matrix, HLU was often
faster than BLU due to HLU’s lower
computational cost.

Figure 11 Performance of the shared-
memory factorization. Left graph shows the
breakdown of the flop counts needed for
different phases of factorization (diagonal
factorization, computation of off-diagonal
t i les in the panel , updating either
compressed or dense blocks, and ACA),
relative to the total flop count for BLR. Right
tables shows the factorization time in
seconds using different numbers of threads
on one node.

Figure 12 Computational and storage costs
with varying matrix sizes. The low-rank
compression greatly reduces the costs of the
factorization, e.g., for the matrices in this
figure, the dense factorization would require
the computational costs of 0.7, 667, 2250,
6352, and 25743 Tflops, and the storage costs
of 0.8, 80, 180, 360, and 914 GB.

 Figure 12 visualizes the computational and
storage costs of BLU and HLU for varying
matrix dimension. The difference between
the costs of the two algorithms tends to
increase with the increase in the matrix
dimension. The cost of the new lattice LU is
between those of BLU and HLU depending
on the lattice size used.

O(k n)

!7

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
Final Report for JHPCN Joint Research of FY 2018, May 2019

F igure 13 Effects of MPI/OpenMP
configurations on the factorization time for
the matrix 100ts with 18 threads per process
on Reedbush-L.

 We now compare the performance of BLU
and the new LLU (lattice LU) on the
distributed-memory computer. We first
study the effects of the lattice size with the
increasing number of processes (e.g., the
storage or computational cost per process).
For LLU, we used the fixed leaf size used for
HLU (i.e., 300). As we reduce the lattice size,
the H-matrix is split into smaller lattices,
becoming closer to BLR. The factorization
costs did not significantly change using
different leaf sizes.
 Figure 13 shows the performance of LLU
using three different MPI/OpenMP
configurations: i.e., 1) flat-MPI with one
process per core, 2) MPI+OpenMP with one
process per socket and one thread per core
but with a synchronization among the local
threads before each phase of factorization,
and 3) MPI+OpenMP tasks. We see that the
hybrid MPI/OpenMP programming often
reduces the cost of inter-process comm-
unication, performing better than the flat-
MPI. The performance can be further
improved using tasks that avoid the artificial
synchronizations and obtain a better core
utilization.
 To accommodate the large storage costs of
BLU, we conducted the remaining
experiments on Reedbush-L. Figure 12(a)
shows the load imbalance among the
processes for computing BLU and HLU.
Since HLU’s lattice size is larger than BLU’s
tile size, HLU had a greater load imbalance,
especially with a larger process count.

5. Details of FY2018 Research Achievements
 During FY2018 we have tackled multiple
objectives, including the use of FMM to
compress H-matrices and the hybrid BLR /
H-matrix format for distributed H-LU
decomposition.

5.1	Using FMM for H-matrix compression
The fast multipole method (FMM) was
originally developed as an algorithm to
bring down the O(N2) complexity of the
direct N-body problem to O(N) by
approx imat ing the h ierarch ica l ly
decomposed far field with multipole/local
expansions. In its original form, the
applicability of FMM is limited to
problems that have a Green’s function
solution, for which the multipole/local
expansions can be calculated analytically.
Their function is also limited to matrix-
vector multiplications, in contrast to the
algebraic variants that can perform
matr ix -matr ix mult ip l i cat ion and
factorizations. However, these restrictions
no longer apply to the FMM since the
kernel independent FMM does not require
a Green’s function. All it requires is a
functional form of the operator that
generates the matrix. Using this function,
the KIFMM is able to form a hierarchical
low-rank matrix, because the FMM is
nothing but a matrix-free version of the H-
matrix-vector multiplication.
 A large part of the calculation time of
FMM is spent on the translation of
multipole expansions to local expansions
(or their equivalent charges). Therefore,
much work has focused on developing fast
translation operators to accelerate this
part of the FMM. Rotation of spherical
harmonics, Block FFT, Planewaves are
analytic options for fast translation
operators.
 These translation operators are applied to
a pair of boxes in the FMM tree structure
that satisfy a certain proximity threshold.
This proximity is usually defined as the
parent’s neighbors’ children that are non-
neighbors. This produces a list of boxes
that are far enough that the multipole/
local expansion converges, but are close
enough that the expansion does not
converge for the their parents. Such an
interaction list can contain up to 63 − 33 =
189 source boxes for each target box. Out
of these 189 boxes, the ones that are
further from the target box can perform
the translation operation using their
parent box as the source without loss of

!8

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
Final Report for JHPCN Joint Research of FY 2018, May 2019

accuracy. There are a few variants for
these techniques that reduce the
interaction list size such as the level-skip
M2L method and 8,4,2-box method. There
are also methods that use the dual tree
traversal along with the multipole
acceptance criterion to construct optimal
interaction lists, which automates the
process of finding the optimal interaction
list size.
 Another technique to accelerate the
translation operators is the use of variable
expansion order, as proposed in the very
fast multipole method (VFMM), Gaussian
VFMM, optimal parameter FMM, and
error controlled FMM. There are two main
reasons why spatially varying the
expansion order in the translation
operators is beneficial. One is because not
all boxes in the interaction list are of equal
distance, and the boxes that are further
from each other can afford to use lower
expansion order, while retaining the
accuracy. The other reason is because
some parts of the domain may have
smaller values, and the contribution from
that part can afford to use lower
expansion order without sacrificing the
overall accuracy.
 The translation operators can be stored as
matrices that operate on the vector of
expansion coefficients. Therefore, singular
value decomposition (SVD) can be used to
compress this matrix and BLAS can be
used to maximize the cache utilization.
Some methods use a combination of these
techniques like Chebychev with SVD and
p l a n e w a v e w i t h a d a p t i v e c r o s s
approximation (ACA) and SVD. The use of
SVD is a systematic and optimal way of
achieving what the variable expansion
order techniques in the previous
paragraph were trying to do manually.
Precomputing these translation matrices
and storing them is a typical optimization
technique in many FMM implementations.
 One important connection to make here is
that these matrices for the translation
operators are precisely what H2-matrices
and HSS matrices store in the off-diagonal
blocks after compression. One can think of
FMM as a method that has the analytical
form to generate these small matrices in
the off-diagonal blocks, without relying on
numerical low-rank approximation
methods. To complete this analogy, we
point out that the dense diagonal blocks in
H2-matrices and HSS matrices are simply
storing the direct operator in FMM.

Figure 14 Calculation time for a single
matrix-vector multiplication including setup
time for the Green’s function of a 3-D
Laplace equation for H-matrix and FMM on
the CPU and FMM on the GPU.

Noticing this equivalence leads to many
possibilities of hybridization among the
analytic and algebraic variants. Possibly
the most profound is the following. Those
that are familiar with FMM know that
translation operators for boxes with the
same relative positioning are identical.
This suggests that many of the entries in
the off-diagonal blocks of H2-matrices and
HSS matrices are identical. For matrices
that are generated from a mesh that has a
regular structure even the diagonal blocks
would be identical, which is what happens
in FMMs for continuous volume integrals.
This leads to O(1) storage for the matrix
entries at every level of the hierarchy, so
the total storage cost of these hierarchical
matrices could be reduced to O(logN) if the
i d e n t i c a l e n t r i e s a r e n o t s t o r e d
redundantly. This aspect is currently
underutilized in the algebraic variants,
but seems obvious from the analytic side.
By making use of the translational
invariance and rotational symmetry of the
interaction list one can reduce the amount
of storage even further. This also results
in blocking techniques for better cache
utilization.
 In Figure 14 we show the results of the
FMM compression by comparing it with a
H-matrix. The FMM is calculated on both
the CPU and GPU. The CPU is a 12 core
Ivy Bridge (E5-2695v2) and the GPU is a
P100. GPU kernel launch has a constant
overhead so for small N it does not show
O(N) behavior.

!9

103 104 105 106

N

10-4

10-3

10-2

10-1

100

101

102

103

tim
e

[s
]

O(N)

H-matrix(CPU)
FMM(CPU)
FMM(GPU)

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
Final Report for JHPCN Joint Research of FY 2018, May 2019

Figure 15 Memory usage of H2-matrix vs
FMM

 Another important aspect of using FMM
for H-matrix compression is the memory
usage as shown in Figure 15. The original
FMM is matrix-free and therefore,
consumes the least amount of memory. If
the FMM naively stores all it’s M2L
translation matrices, it will consume the
same amount of memory as the HSS.
However, rotational symmetry and
translational invariance of the FMM node
structure can be exploited to make the
M2L translation matrix have O(1) memory
usages. Furthermore, if the points are
positioned with fine grain homogeneity the
P2P translation matrix can also be stored
using O(1) memory, which means the
dense blocks in the resulting H-matrix can
also be stored with constant memory
usage. The extension of the FMM
compression to distributed memory is
straightforward since we already have a
MPI implementation of the FMM code.

5.2	 Hybrid H-matrix-BLR format (lattice H-
matrix) for LU decomposition

We propose a novel method to parallelize
the factorization of a hierarchical low-rank
matrix (H-matrix) on the distributed-
memory computers. By getting rid of the
hierarchy, the Block Low Rank (BLR)
f o r m a t n o t o n l y s i m p l i f i e s t h e
parallelization, but also increases
concurrency. However, this comes at a
price of losing the near linear complexity
of the H-matrix factorization. In the
present work, we propose a “lattice H-
matrix” format that generalizes the BLR
format by storing each of the blocks,

!
Figure 16 Various hierarchical low-rank
structures and the lattice H-matrix
approach

referred to as lattices, in the H-matrix
format. Hence, this new format aims to
combine the parallel scalability of BLR
with the near linear complexity of H-
matrices.
 Figure 16 illustrates how a different low-
rank structured matrix can be generated
from a different partition structure for a
given problem. Each partition structure
has its own pros and cons. For instance,
the H-matrix is the most general low-rank
matrix structure, and it is an effective way
of compressing the matrix with small
numerical ranks. However, the H-matrix
partition structure usually has the
irregular structure as shown in Figure
16(a), which makes it challenging to
perform some matrix operations on a
distributed-memory computer (e.g. LU
factorization).
 To ease the implementation, and to
improve the parallel scalability, of the
distributed matrix operations, simpler
partition structures have been proposed.
For instance, by introducing the weak
admissible condition, we can construct the
partition structure, which is used to
generate the Hierarchical Semi-Separable
(HSS) matrix or the Hierarchically Off-
Diagonal Low-Rank (HODLR) matrix, and
is shown in Figure 16(b). Compared with
the H-matrix structure, the structure is
s impler and more convenient for
performing certain matrix operations on
the distributed-memory computers.
However, this matrix structure assumes a

!10

103 104 105 106

N

10-2

10-1

100

101

102

103

104

105

M
em

or
y

us
ag

e
[M

B]

O(N)

H2-matrix (weak)
H2-matrix (strong)
FMM

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
Final Report for JHPCN Joint Research of FY 2018, May 2019

weak admissibility condition, where all
off-diagonal blocks are assumed to be low-
rank. When the weak admissibility
condition is applied to a 3D or higher
dimensional problem, this structure leads
to a higher asymptotic complexity due to
the larger ranks of off-diagonal blocks.
 Block Low Rank (BLR), shown in Figure
16(c), is another simpler matrix structure,
which has the lattice partition structure.
Though the construction of the BLR
matrix does not require the block cluster
tree used to construct the H-matrix, it can
be constructed by truncating all branches
of the cluster tree at a certain depth level.
The partitioning structure of BLR is then
given by the induced blocks. After the
structure is defined, the admissible
condition is verified on each block. The
memory complexity of the BLR matrix is
O(n1.5) and is higher than O(n log n) of the
H-matrix. However, the BLR matrix is a
simple, nonhierarchical, and effective low-
rank format, especially for the distributed-
memory. For instance, the lattice structure
observed in the BLR matrix is similar to
the 2D block layout used in many dense
matrix operations (e.g., ScaLAPACK), and
it can use many of the high-performance
optimization techniques developed for the
dense matrix operations.
 Finally, Figure 16(d) shows the hybrid
partitioning structure of the new lattice H-
matrix that we use in this paper. It
combines the BLR’s lattice structure with
the H-matrix partition structure by
introducing the lattice structure on top of
the H-matrix structure. In other words,
the lattice H-matrix utilizes the H-matrix
format for each lattice block. These lattice
blocks are then distributed among the
processes in a 2D block cyclic fashion. It is
designed to balance the advantages of the
H-matrix and BLR formats: the high
compressibility of the H-matrix, which
reduces the memory and computational
costs, and the parallel scalability of the
BLR matrix. Using the lattice H-matrix,
the complex matrix operations originating
f rom the H-matr ix s tructure are
p e r f o r m e d u s i n g t h e t h r e a d e d
computational kernels. Hence, taken a
large enough lattice size, the lattice H-
matrix can reduce the memory complexity
from O(n1.5) of the BLR matrix to O(n log
n) of the H-matrix. At the same time, the
l a t t i c e m a t r i x h a s t h e s a m e
communication pattern as the BLR
matrix, and it can utilize the high-

performance parallel algorithms and the
e f f i c i ent communicat i on s chemes
developed for the dense matrix operations.
 Our current contributions can be
summarized as follows:
・ The new “lattice H-matrix” format

combines the scalability of BLR with
the near linear complexity of the H-
matrix. To the best of our knowledge,
the proposed format is the first attempt
to balance the complexity and
concurrency of these two structured
low-rank formats for LU factorization.
The hierarchical structure was
prev ious ly embedded in a f lat
structure, but the previous format did
not consider the balance between the
complexity and concurrency.

・ We c o m p a r e t h e f a c t o r i z a t i o n
performance using the H-matrix, BLR,
and new lattice H-matrix formats
under various conditions on shared and
distributed-memory computers. This
helps quantify the benefit of the
formats and determines under what
conditions which format benefits the
performance. Such studies are of
interests to a wide range of audiences
including the solver developers and
users.

・ Our performance comparison includes
different combinations of MPI and
OpenMP thread or task configurations.
For instance, the dynamic task
scheduling avoids the artif icial
synchronization and remedies the load
imbalance from having a large lattice.
In contrast, without tasking, the
synchronization point exposes the load
imba lance a t the end o f each
factorization phase.

6. Progress of FY2018 and Future Prospects
The four goals for FY2018 were;
“Implement the FMM compression on
GPUs”, “Extend the FMM compression to
distributed memory”, “Use the hybrid H-
matrix-BLR format for LU decomposition”,
and “Optimize the distributed memory LU
decompos i t i on us ing the ParSEC
runtime”.
 We were able to achieve 4 out of the 4
objectives, although the 4th objective
required us to change our strategy and the
code has just been completed at the time
of writing this final report. We expect to
submit the results for the 4th objective to
IEEE Cluster and are currently preparing

!11

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
Final Report for JHPCN Joint Research of FY 2018, May 2019

the new results.

For “Implementing the FMM compression
on GPUs”, we were able to finish the GPU
part during the latter half of FY2018. We
are currently discussing with Timo Betcke
to integrate the FMM code with BEM++ —
one of the most widely used open source
BEM codes. BEM++ currently uses H-
matrices to accelerate the computation,
but we have convinced the developers of
BEM++ that FMM can be much faster.
This is also related to the second objective
“Extend the FMM compression to
distributed memory”. We are discussing
how to interface the distributed BEM++
with the distributed FMM code. We have
decided to pass the octree between the two
codes, which only requires passing the
distributed (hashed) Morton key.

For “Using the hybrid H-matrix-BLR
format for LU decomposition”, we have
achieved our goals with satisfactory
performance, where the corresponding
papers have been accepted to IPDPS’18
[3,4]. Further optimization of the
HACApK code has been performed with
advancements in the CPU implementation
[5], distributed memory implementation
[6], and GPU implementation [7,8].

For “Optimizing the distributed memory
LU decomposition using the ParSEC
runt ime” , we have had mul t ip l e
discussions with the ParSEC developers
and have decided that ParSEC cannot
provide the features we need to perform
LU decomposition of H-matrices. We have
changed our strategy to use StarPU,
which is much more user friendly and
b e t t e r m a i n t a i n e d . O u r S t a r P U
implementation of LU decomposition of H-
matrices is ready and we plan to submit
our initial results to IEEE Cluster.

We not only developed the H-matrix library
in FY2018 but also applied it to various
scientific problems including electro-
magnetics [1] and micro-magnetics [2]. A
new and exciting application that we have
extended H-matrices to is second order
optimization methods in deep learning [13].
Though, we have found that exploiting the
Kronecker structure and not the hierarchical
low-rank structure is a more natural fit
[9,10].

7. List of Publications and Presentations

(1) Journal Papers
1. N. Tominaga, T. Mifune, A. Ida, Y. Sogabe, T.

Iwashita, N. Amemiya, ``Application of
h ierarchical matr ices to large-scale
electromagnetic field analyses of coils wound
with coated conductors”, IEEE Transactions
on Applied Superconductivity, Vol. 28, No. 3,
pp.1-5 (2018).

2. A. Ida, T. Ataka, T. Mifune, Y. Takahashi, T.
Iwashita, A. Furuya,``Application of
Improved H-matrices in Micromagnetic
Simulat ions”, IEEE Transact ions on
Magnetics, Vol. 54, No. 3, 2018.

(2) Conference Papers
3. I. Yamazaki, A. Abdelfattah, A. Ida, S.

Ohshima, S. Tomov, R. Yokota, J. Dongarra,
``Analyzing Performance of BiCGStab with
Hierarchical Matrix on GPU clusters,” 32nd
IEEE International Parallel & Distributed
Process ing Symposium, IPDPS2018 ,
Vancouer, Canada, 21-25 May (2018).

4. A. Ida, ``Lattice H-Matrices on Distributed-
Memory Systems”, 32nd IEEE International
P a r a l l e l & D i s t r i b u t e d P r o c e s s i n g
Symposium (IPDPS 2018), Vancouver,
Canada, 21-25 May (2018).

5. T. Hoshino, Akihiro Ida, T. Hanawa, K.
Nakajima, ``Design of Parallel BEM Analyses
Framework for SIMD Processors”, The
International Conference on Computational
Science 2018 (ICCS 2018), Wuxi, China, 11-13
Jun. (2018).

6. A. Ida, ``Introduction to Lattice H-matcies on
Distributed Memory Computer Systems”,
P ro c e e d i n g s o f t h e C o n f e re n c e o n
Computational Engineering and Science,
Nagoya, Japan, 6-8 Jun. (2018)

7. S. Ohshima, I. Yamazaki, A. Ida, R. Yokota,
``Software Auto-Tuning for Hierarchical
Matrix Computation”, Proceedings of the
Conference on Computational Engineering
and Science, Nagoya, Japan, 6-8 Jun. (2018)

8. S. Oshima, I. Yamazaki, A. Ida, R. Yokota, ``
Optimization of Hierarchical Matrix
Computation on GPU”, Proceedings of the
4th Asian Conference, Lecture Notes in
Computer Science, Vol. 10776, pp. 274-292,
Singapore, 26-29 Mar. (2018).

(3) Oral Presentations
9. R. Yokota, ``Optimization Methods for Large

Scale Distributed Deep Learning”, IPAM
Workshop I: Big Data Meets Large-Scale
Computing, Los Angeles, USA, 24-28, Sept.
(2018).

10. R. Yokota, Scaling ``Deep Learning to
!12

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
Final Report for JHPCN Joint Research of FY 2018, May 2019

Thousands of GPUs”, HPC 2018, Cetraro,
Italy, 2-6 Jul. (2018).

11. R. Yokota, ``Energy Conserving Fast
Multipole Methods for the Calculation of
Long-range Interactions”, Mathematics in
Action: Modeling and analysis in molecular
biology and electro- physiology, Suzhou,
China, 16-18 Jun. (2018).

12. A. Ida, ``Low Rank Approximation Methods
Used in Hierarchical Matrices”, ATAT in
HPC 2018, National Cheng Kung University,
Tainan, Taiwan, 27 Mar. (2018)

13. R. Yokota, Can we use Hierarchical Low-
Rank Approximation for Deep Learning?,
HPC Saudi 2018, Jeddah, Saudi Arabia, 12-13
Mar. (2018).

(4) Others

!13

