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Hierarchical low-rank approximation methods such as H-matrix, H2-matrix, and 
HSS can compress a dense matrix with O(N2) elements into a hierarchical matrix 
with O(N) elements. By using such compressed matrices it is possible to perform 
matrix-matrix multiplication, LU decomposition, and eigenvalue computation in 
near-linear time. They are most commonly used in boundary integral problems 
where the matrix to be solved is dense. Hierarchical matrices can also be applied to 
Schur complements that arise in sparse direct solvers, so their applicability extends 
to fluid, structure, and electromagnetic simulations. However, these hierarchical 
algorithms are rather new and highly optimized implementations do not exist at the 
moment. A highly optimized distributed memory GPU implementation is needed to 
extract the potential parallelism of these methods. 

1. Basic Information 
(1) Collaborating JHPCN Centers  

The University of Tokyo 
Information Technology Center 

Tokyo Institute of Technology 
Global Scientific Information and Computing 
Center 

Hokkaido University 
Information Initiative Center 

Kyoto University 
Academic Center for Computing and Media 
Studies 

(2) Research Areas 
☑ Very large-scale numerical computation 
□ Very large-scale data processing 
□ Very large capacity network technology 
□ Very large-scale information systems 

(3) Roles of Project Members 
Rio Yokota (Tokyo Institute of Technology) 
Low-rank approximation using FMM and its 
GPU-MPI implementation 

Ichitaro Yamazaki (University of Tennessee) 
Development of distributed memory runtime 
–ParSEC and blocked BLAS library for GPU 
–block MAGMA 

Akihiro Ida (The University of Tokyo) 
Feature extension of hybrid MPI/OpenMP 
H - m a t r i x c o d e – H A C A p K , a n d i t s 
integration with ParSEC and block MAGMA 

Takeshi Iwashita (Hokkaido University) 
Application of HACApK to boundary 
integral solvers for electromagnetics, and 
optimization of H-matrix-vector product 

Takayuki Aoki (Tokyo Inst i tute of 
Technology) 
Application of HACApK to Poisson solvers 
for multiphase flows 

Satoshi Oshima (Kyushu University) 
GPU implementation of HACApK and 
integration with MAGMA 

Taku Hiraishi (Kyoto University) 
Dynamic load-balancing of HACApK 

Kengo Nakajima (University of Tokyo) 
Extend capability of HACApK within the 
ppOpen-HPC framework. 

Jack Dongarra (University of Tennessee) 
Development of distributed memory runtime 
–ParSEC and blocked BLAS library for GPU 
–block MAGMA 

2. Purpose and Significance of the Research 
 H-matrices can reduce the arithmetic 
complexity of dense matrix-multiplication 
and factorization from O(N3) to O(Nlog2N) 
but still attain high Flop/s on GPUs by 
making use of batched BLAS operations. 
Conventional fast algorithms with low 
arithmetic complexity such as FFT, sparse 
linear algebra, and multigrid methods have 
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low arithmetic intensity and are memory-
bound on most modern architectures. 
Conversely, methods with high arithmetic 
intensity like dense linear algebra and N-
body methods can remain compute-bound 
on modern architectures, but tend to have a 
high arithmetic complexity and waste many 
Flop/s. H-matrices have a rare combination 
of high arithmetic intensity and low 
arithmetic complexity, which makes them an 
interesting alternative to many existing 
algorithms on future architectures. 
 H-matrices were initially applied to 
boundary integral problems in electro-
magnetics, seismic, and fluid simulations. 
However, H-matrices have recently been 
growing in popularity in new fields that can 
benefit from approximate dense linear 
algebra operations such as machine learning 
and stat is t ics/big data . The broad 
applicability of H-matrices makes it a 
worthwhile algorithm to heavily optimize 
on many-core and accelerator architectures. 
 One of the goals of this project is to 
facilitate the transition to the algorithm of 
the future, by providing a highly 
optimized H-matrix library that users can 
simply call from their existing framework. 
An important aspect of this approach is 
that our code will be optimized on CPU, 
GPU, and Xeon Phi, which represents the 
range of architectures for JHPCN 
platforms during the coming years. 

3. Significance as a JHPCN Joint Research 
Project  
 Each member of this project has different 
expertise, all of which are essential for the 
development and verification of a high 
performance H-matrix library. R. Yokota is 
the developer of exaFMM, which is a highly 
scalable and GPU equipped FMM code have 
the same data structure as an HLRA code. A. 
Ida and T. Iwashita are developers of 
HACApK – a hybr id MPI -OpenMP 
implementation of the HLRA. T. Hiraishi has 
experience in load-balancing for distributed 
memory H-matrix codes. I. Yamazaki and J. 
Dongarra are developers of dense linear 
algebra libraries such as MAGMA and 
PLASMA. T. Aoki has expertise in large scale 
fluid dynamics simulations that make use of 
distributed memory and GPUs. S. Oshima 
has expertise in tuning solvers for GPUs and 
Xeon Phi. K. Nakajima has expertise in 

parallel preconditioned iterative solvers and 
their application in CFD with AMR. The 
combination of these expertise is necessary 
for achieving the goals mentioned above.  
 Furthermore, each member already has 
highly optimized code for each component, 
which gives us an advantage over other 
groups that are writing an H-matrix code 
from scratch. There are a few existing H-
matrix implementations, but they are limited 
to shared memory and have not been ported 
to GPUs. To our knowledge, HACApK is the 
only multi-GPU H-matrix code available at 
the moment. This could only have been done 
through a JHPCN international collaboration 
between the experts in each area. 

4. Outline of the Research Achievements up 
to FY2017 

4.1	 H-matrix-vector multiplication on multi-
GPUs 

 The present JHPCN project “Hierarchical 
Low-Rank Approximation Methods on 
Distributed Memory and GPUs” is 
currently in its third year. The first year 
(FY2016) focused on porting the HACApK 
code to GPU and using it to perform the 
matrix-vector multiplication inside a 
GMRES solver. 

The GPU implementation of HACApK was 
achieved through the use of MAGMA. Since 
one of the developers of MAGMA – Ichitaro 
Yamazaki was a collaborator in this project, 
the integration of MAGMA with HACApK 
was done in a very short amount of time. We 
were therefore able to have a multi-GPU 
version by the end of FY2016. 
 The performance of HACApK on multi-
GPU is shown in Figure 1, where ``Comp” is 
the computational kernels, ``Copy” is the 
CUDA memory copy time, ``Comm” is the 
M P I c o m m u n i c a t i o n . T h e M P I 
communication time eventually becomes the 
bottleneck because the mat-vec computation 
part takes very little time on the GPU. 
 During FY2017, we have made significant 
progress in the use of batched MAGMA 
with HACApK, and i ts mult i -GPU 
implementation. We have validated its 
performance by applying it to the matrix-
vector multiplication in a BiCGSTAB solver. 
Though the low-rank compression reduces 
the cost of the matrix multiply, in many 
cases, the BiCG’s iteration time is still 
dominated by this H-Mat-Vec. 
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Figure 1. Performance of BiCGSTAB using 
HACApK for the mat-vec on multiple GPUs. 

 To reduce the iteration time using a 
distributed-memory computer, HACApK 
distributes the contiguous, but not disjoint, 
rows of the matrix among the processes. 
Then, each process performs HMVM with 
its local submatrix. With this parallelization 
scheme, the only required inter-process 
communication is the all-gather needed after 
HMVM to form the global vector on each 
process (using MPI_Allgatherv). 
 This parallelization scheme is motivated by 
two performance properties of the solver: 1) 
the BiCG’s computation time is dominated 
by HMVM, while the time needed for the 
remaining vector operations is insignificant 
in the computation time and 2) the 
redundant computation of the vector 
operations avoids the global all-reduces 
needed to compute the six dot-products for 
each BICG iteration, which can be much 
more expensive compared with the arith-
metic operations. Hence, by redundantly 
performing the vector operations, this 
parallelization scheme aims to balance out 
two conflicting performance factors: distri-
buting the computation with a minimum 
inter-process communication. 
 We conducted all the experiments in double 
precision, and used the matrices from 
electrostatic field simulations with perfect 
conductors of two particular shapes: 
• Sphere: pairs of perfect conductors with 

the shape of a sphere. For each pair, one 
sphere has its electric potential set to be 1 
Volt, while the other has the electric 
potential of −1 Volt. We use the boundary 
value of 0 Volt at infinity and analyze the 
induced electrical charge on the surface of 
the spheres. 

• Human: perfect conductors with the shape 
of a humanoid who is standing on a 
uniform 2D grid on a uniform electric  

  
Figure 2. Block sizes in test matrix ``100ts” 

field. The surface of the humanoid is 
divided into 2, 359, 680 triangular elements 
and the induced electrical charge on the 
humanoid’s surface was calculated using an 
indirect BEM with a single layer potential 
formulation and step functions as the base 
function for the BEM. 
Table 1 lists our test matrices. The large-

scale matrices 8ms and 20ms were used for 
the inner-iteration to precondition the linear 
system. All of the compressed blocks have 
rank one and we fixed the number of inner 
iterations to be 20 for our experiments. 
Figure 2 shows the sizes of the blocks in the 
matrix 100ts. We see a wide range of the 
block sizes where all the blocks on the 
diagonal are square and dense, while off-
diagonal blocks can be either dense or 
compressed and are either tall-skinny or 
wide-short. To utilize the GPU, each process 
divides its local dgemv tasks into several 
batches (e.g., a batch with a fixed number of 
dgemv’s), and then calls dgemv_batched for 
each batch. dgemv_batched can execute 
dgemv’s with variable matrix sizes in a 
single kernel launch. However, the 
performance of dgemv_batched can be 
much lower than its fixed-size counterpart. 

T a b l e 1 . T e s t m a t r i c e s w h e r e 
“compression%” is the ratio of the total 
number of numerical values in the 
compressed matrix over nlog2(n). 
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Figure 3. Matrix 100ts sorted by the number 
of rows 

  
Figure 4. Matrix 100ts sorted by number of 
rows, and then by number of columns within 
group. 

This is especially true when there is a wide 
range of matrix sizes in the single batch. In 
order to improve the performance of 
dgemv_batched, we examined several 
schemes to sort the blocks of A, on which 
dgemv’s operate. In Figure 3, the blocks 
were sorted in the ascending order of their 
numbers of rows, and in Figure 4, we first 
grouped the blocks according to the number 
of rows (the k-th group contains the block 
with the number of rows in the range 
between 8(k −  1) + 1 and 8k), and then we 
order the blocks in the same group 
according to their numbers of columns. 

  
Figure 5. Sorting scheme of Figure 3 with 
fixed batch count. 

  
Figure 6. Sorting scheme of Figure 4 with 
fixed batch count. 

 Figures 5 and 6 show the effects of these 
two sorting schemes on the kernel 
performance for the matrix 100ts. The figure 
also shows the performance of the fixed-size 
batched kernel for each block size, which we 
consider as the upper bound on the 
performance of the variable-size kernel. We 
clearly see that the performance can be 
significantly improved by properly sorting 
the blocks (speedups of up to 2.5×) and the 
variable size kernel may obtain the 
performance closer to that of the fixed-size 
kernel. 
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(a)Strong scaling 100ts       (b) On 8 nodes 

Figure 7. Performance on Tsubame-3. The 
blue markers show the solution time with 
original HACApK without GPUs, while the 
bars are with the GPUs. 

  
(a)Strong scaling 100ts       (b) On 8 nodes 

Figure 8. Performance on Reedbush-H. The 
blue markers show the solution time with 
original HACApK without GPUs, while the 
bars are with the GPUs. 

  Figures 7 and 8 show the effects of the GPU 
kernels on the BiCG performance on 
Tsubame-3 and Reedbush-H, respectively. 
For the performance without the GPUs, we 
bind each process to a socket and launch one 
OpenMP thread on each of the available 
cores of the socket. We found this process/
thread configuration typically gives the best 
performance of the hybrid MPI/OpenMP 
implementation. With the GPUs, we launch 
one process per GPU (i.e., four or two 
processes per node on Tsubame-3 or 
Reedbush-H). The figures clearly show that 
the GPUs have reduced the iteration time 
significantly, obtaining the speedups of 
about 4.2× and 4.5× on eight nodes of 
Tsubame-3 and Reedbush-H, respectively (in 
Figures 7(b) and 8(b)). 

  
Figure 9 Illustration of popular low-rank 
structures generated for the same problem: 
(a) general H-matrix and its conversion to 
(b) Hierarchically Off-Diagonal Low-Rank 
(HODLR) layout, (c) Block Low-Rank (BLR) 
layout, and (d) lattice H-matrix layout. 
Blocks painted in deep red show dense 
submatrices, and blocks in light red indicate 
low-rank submatrices.  

4.2	 H - m a t r i x L U - d e c o m p o s i t i o n o n 
distributed memory 

 We propose a novel method to parallelize 
the factorization of a hierarchical low-rank 
matrix (H-matrix) on distributed memory 
computers. H-matrix factorization is much 
more difficult than the parallelization of a 
dense matrix factorization due to the 
hierarchical block structure of the matrix, 
and it is much more difficult than the H-
matrix vector multiplication due to the 
dataflow of the factorization. Getting rid of 
the hierarchy, the Block Low Rank (BLR) 
f o r m a t n o t o n l y s i m p l i f i e s t h e 
p a r a l l e l i z a t i o n , b u t a l s o i n c re a s e s 
concurrency. However, this comes at a price 
of loosing the near linear complexity of the 
H-matrix factorization. In the present work, 
w e p r o p o s e a “ l a t t i c e H - m a t r i x ” 
factorization that combines the parallel 
scalability of BLR with the near linear 
complexity of H-matrix. To the extent of our 
knowledge, there have been no such 
attempts to balance the complexity and 
concurrency of two structured low-rank 
approximation methods. 
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 We can generate any of the low-rank 
structures shown in Figure 9 by controlling 
the admissibility condition and the branch 
truncation of the block cluster tree during 
the construction of the H-matrix. Hence, all 
structured low-rank matrices can be 
regarded as special types of the H-matrices, 
as illustrated in Figure 9 for a given 
problem. 
 Each partitioning structure has different 
pros and cons. For instance, the H-matrix is 
the most general low-rank matrix structure, 
and it is an effective way of compressing the 
matrix with small numerical ranks. 
However, it usually has a complicated 
partitioning structure as shown in Figure 
9(a), which makes it challenging to perform 
some matrix operations on a distributed-
memory computer (e.g. LU factorization). 
 To improve the parallel scalability of the 
matrix operations, simpler partitioning 
structures have been proposed. For instance, 
by setting a weak admissibility condition, 
we can construct the partitioning structure 
shown in Figure 9 (b), which can be seen in 
the Hierarchical Semi-Separable (HSS) 
matrix or in the Hierarchically Off-Diagonal 
Low-Rank (HODLR) matrix. Compared 
with the H-matrix structure, this structure is 
simpler and more convenient for per- 
forming certain matrix operations on 
distributed-memory. However, this matrix 
structure assumes a weak admissibility 
condition, where all off-diagonal blocks are 
assumed to be low-rank. When the weak 
admissibility condition is applied to a 3D or 
higher dimensional problem, this structure 
leads to a higher asymptotic complexity due 
to the larger ranks of off-diagonal blocks. 
 Block Low Rank (BLR), shown in Figure 
9(c), is another simpler matrix structure. 
Though the construction of the BLR matrix 
does not require the block cluster tree used 
to construct the H-matrix, it can be 
constructed by truncating all branches of the 
cluster tree at a certain depth level. The 
partitioning structure of BLR is then given 
by the induced blocks in the block cluster 
tree. The admissible condition is verified on 
each block after the structure is defined. The 
memory complexity of the BLR matrix is 
O(n1.5) and is higher than O(nlogn) of the H-
matrix. However, the BLR matrix is a simple, 
nonhierarchical, and effective low-rank 
layout, especially for the distributed-

memory. In particular, the BLR structure has 
the block layout similar to the 2D block 
layout used in many dense matrix 
operations, and it can use many of the high-
performance optimization techniques 
developed for the dense matrix operations. 
 Figure 9 (d) shows the partitioning 
structures of the lattice H-matrix that we use 
in this paper. It combines the structures of 
BLR with the H-matrix by introducing the 
lattice structure on top of the H-matrix. In 
other words, the lattice H-matrix utilizes the 
H-matrix format for each block of the BLR 
matrix. These lattices are then distributed 
among the processes in a 2D block cyclic 
fashion. It is designed to balance the 
advantages of the H and BLR matrices: the 
high compressibility of the H- matrix, which 
reduces the memory and computational 
costs, and the parallel scalability of the BLR 
matrix. Using the lattice H-matrix, the 
complex matrix operations originating from 
the H-matrix structure are performed using 
the threaded computational kernels. 
 Taken a large enough lattice size, the lattice 
H - m a t r i x c a n re d u c e t h e m e m o r y 
complexity from O(n1.5) of the BLR matrix to 
O(nlogn) of the H-matrix. At the same time, 
t h e l a t t i c e m a t r i x h a s t h e s a m e 
communication pattern as the BLR matrix, 
and it can utilize the high-performance 
parallel algorithms and the efficient 
communication schemes developed for the 
dense matrix operations. 
 We conducted our experiments on the on 
the Reedbush-L supercomputer at the 
University of Tokyo, and the TSUBAME3.0 
supercomputer at the Tokyo Institute of 
Technology, and also the Edison super-
computer at the National Energy Research 
Scientific Computing Center (NERSC). We 
used Intel MPI compiler mpiifort and 
mpiicpc of version 18.1.163. On all systems, 
the code was compiled using the -O3 
optimization flag, and linked to sequential 
MKL version 2018.1.163. 
 We first study the performance of the 
threaded BLR LU (BLU) and threaded H-
matrix LU (HLU) factorization on the 
shared-memory CPUs. One of the critical 
parameters that affect the factorization 
performance is the leaf size. Hence, we first 
seek for an optimal leaf size that obtains the 
shortest factorization time. 
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Figure 10 Effects of the leaf sizes on the 
factorization time, and the computational 
and storage costs of the factorization. 

 Figure 10 shows the effects of the leaf size 
on the factorization performance. A larger 
leaf size tends to increase both the 
computational and storage costs of the BLU 
factorization, but it also improves the 
performance of the BLAS and LAPACK 
subroutines used for the local computation. 
In many cases, BLU obtained the fastest 
factorization time using the leaf size that is 
larger than that obtained the minimum 
storage or computation. The optimal leaf 
size also tends to increase with the increase 
in the matrix dimension. In contrast, HLU’s 
factorization time was less sensitive to the 
leaf size. Overall, for our test matrices, the 
leaf size of   with k = 5 was a good 
choice for BLU, and that is what we use for 
the rest of the experiments. 
 For HLU, we use the fixed leaf size of 300. 
With these choices of the leaf sizes that 
obtain the near-optimal performance of each 
algorithm, BLU needed a much larger leaf 
size and had much higher storage and 
computational costs than HLU, especially 
for a large matrix. 
 Figure 11(a) shows the relative flop counts 
for different phases of the factorization. We 
see that the flop count is dominated by the 
trailing submatrix update that is well suited 
for the parallelization. Figure 11(b) and 11(c) 
show the resulting thread scalability of the 
two factorization algorithms. Since we used 
a fixed leaf size for HLU, its scalability was 
lower than BLU’s for a small matrix. For 
instance, for the matrix 1ts, there were only 
three diagonal blocks for HLU. On the other 
hand, for a large matrix, HLU was often 
faster than BLU due to HLU’s lower 
computational cost. 

  
Figure 11  Performance of the shared-
memory factorization. Left graph shows the 
breakdown of the flop counts needed for 
different phases of factorization (diagonal 
factorization, computation of off-diagonal 
t i les in the panel , updating either 
compressed or dense blocks, and ACA), 
relative to the total flop count for BLR. Right 
tables shows the factorization time in 
seconds using different numbers of threads 
on one node. 

  
Figure 12 Computational and storage costs 
with varying matrix sizes. The low-rank 
compression greatly reduces the costs of the 
factorization, e.g., for the matrices in this 
figure, the dense factorization would require 
the computational costs of 0.7, 667, 2250, 
6352, and 25743 Tflops, and the storage costs 
of 0.8, 80, 180, 360, and 914 GB. 

 Figure 12 visualizes the computational and 
storage costs of BLU and HLU for varying 
matrix dimension. The difference between 
the costs of the two algorithms tends to 
increase with the increase in the matrix 
dimension. The cost of the new lattice LU is 
between those of BLU and HLU depending 
on the lattice size used. 

O( k n)
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F igure 13 Effects of MPI/OpenMP 
configurations on the factorization time for 
the matrix 100ts with 18 threads per process 
on Reedbush-L. 

 We now compare the performance of BLU 
and the new LLU (lattice LU) on the 
distributed-memory computer. We first 
study the effects of the lattice size with the 
increasing number of processes (e.g., the 
storage or computational cost per process). 
For LLU, we used the fixed leaf size used for 
HLU (i.e., 300). As we reduce the lattice size, 
the H-matrix is split into smaller lattices, 
becoming closer to BLR. The factorization 
costs did not significantly change using 
different leaf sizes. 
 Figure 13 shows the performance of LLU 
using three different MPI/OpenMP 
configurations: i.e., 1) flat-MPI with one 
process per core, 2) MPI+OpenMP with one 
process per socket and one thread per core 
but with a synchronization among the local 
threads before each phase of factorization, 
and 3) MPI+OpenMP tasks. We see that the 
hybrid MPI/OpenMP programming often 
reduces the cost of inter-process comm-
unication, performing better than the flat-
MPI. The performance can be further 
improved using tasks that avoid the artificial 
synchronizations and obtain a better core 
utilization. 
 To accommodate the large storage costs of 
BLU, we conducted the remaining 
experiments on Reedbush-L. Figure 12(a) 
shows the load imbalance among the 
processes for computing BLU and HLU. 
Since HLU’s lattice size is larger than BLU’s 
tile size, HLU had a greater load imbalance, 
especially with a larger process count. 

5. Details of FY2018 Research Achievements 
 During FY2018 we have tackled multiple 
objectives, including the use of FMM to 
compress H-matrices and the hybrid BLR / 
H-matrix format for distributed H-LU 
decomposition. 

5.1	Using FMM for H-matrix compression 
The fast multipole method (FMM) was 
originally developed as an algorithm to 
bring down the O(N2) complexity of the 
direct N-body problem to O(N) by 
approx imat ing the h ierarch ica l ly 
decomposed far field with multipole/local 
expansions. In its original form, the 
applicability of FMM is limited to 
problems that have a Green’s function 
solution, for which the multipole/local 
expansions can be calculated analytically. 
Their function is also limited to matrix-
vector multiplications, in contrast to the 
algebraic variants that can perform 
matr ix -matr ix mult ip l i cat ion and 
factorizations. However, these restrictions 
no longer apply to the FMM since the 
kernel independent FMM does not require 
a Green’s function. All it requires is a 
functional form of the operator that 
generates the matrix. Using this function, 
the KIFMM is able to form a hierarchical 
low-rank matrix, because the FMM is 
nothing but a matrix-free version of the H-
matrix-vector multiplication. 
 A large part of the calculation time of 
FMM is spent on the translation of 
multipole expansions to local expansions 
(or their equivalent charges). Therefore, 
much work has focused on developing fast 
translation operators to accelerate this 
part of the FMM. Rotation of spherical 
harmonics, Block FFT, Planewaves are 
analytic options for fast translation 
operators. 
 These translation operators are applied to 
a pair of boxes in the FMM tree structure 
that satisfy a certain proximity threshold. 
This proximity is usually defined as the 
parent’s neighbors’ children that are non-
neighbors. This produces a list of boxes 
that are far enough that the multipole/
local expansion converges, but are close 
enough that the expansion does not 
converge for the their parents. Such an 
interaction list can contain up to 63 − 33 = 
189 source boxes for each target box. Out 
of these 189 boxes, the ones that are 
further from the target box can perform 
the translation operation using their 
parent box as the source without loss of 
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accuracy. There are a few variants for 
these techniques that reduce the 
interaction list size such as the level-skip 
M2L method and 8,4,2-box method. There 
are also methods that use the dual tree 
traversal along with the multipole 
acceptance criterion to construct optimal 
interaction lists, which automates the 
process of finding the optimal interaction 
list size. 
 Another technique to accelerate the 
translation operators is the use of variable 
expansion order, as proposed in the very 
fast multipole method (VFMM), Gaussian 
VFMM, optimal parameter FMM, and 
error controlled FMM. There are two main 
reasons why spatially varying the 
expansion order in the translation 
operators is beneficial. One is because not 
all boxes in the interaction list are of equal 
distance, and the boxes that are further 
from each other can afford to use lower 
expansion order, while retaining the 
accuracy. The other reason is because 
some parts of the domain may have 
smaller values, and the contribution from 
that part can afford to use lower 
expansion order without sacrificing the 
overall accuracy. 
 The translation operators can be stored as 
matrices that operate on the vector of 
expansion coefficients. Therefore, singular 
value decomposition (SVD) can be used to 
compress this matrix and BLAS can be 
used to maximize the cache utilization. 
Some methods use a combination of these 
techniques like Chebychev with SVD and 
p l a n e w a v e w i t h a d a p t i v e c r o s s 
approximation (ACA) and SVD. The use of 
SVD is a systematic and optimal way of 
achieving what the variable expansion 
order techniques in the previous 
paragraph were trying to do manually. 
Precomputing these translation matrices 
and storing them is a typical optimization 
technique in many FMM implementations. 
 One important connection to make here is 
that these matrices for the translation 
operators are precisely what H2-matrices 
and HSS matrices store in the off-diagonal 
blocks after compression. One can think of 
FMM as a method that has the analytical 
form to generate these small matrices in 
the off-diagonal blocks, without relying on 
numerical low-rank approximation 
methods. To complete this analogy, we 
point out that the dense diagonal blocks in 
H2-matrices and HSS matrices are simply 
storing the direct operator in FMM.  

Figure 14  Calculation time for a single 
matrix-vector multiplication including setup 
time for the Green’s function of a 3-D 
Laplace equation for H-matrix and FMM on 
the CPU and FMM on the GPU. 

Noticing this equivalence leads to many 
possibilities of hybridization among the 
analytic and algebraic variants. Possibly 
the most profound is the following. Those 
that are familiar with FMM know that 
translation operators for boxes with the 
same relative positioning are identical. 
This suggests that many of the entries in 
the off-diagonal blocks of H2-matrices and 
HSS matrices are identical. For matrices 
that are generated from a mesh that has a 
regular structure even the diagonal blocks 
would be identical, which is what happens 
in FMMs for continuous volume integrals. 
This leads to O(1) storage for the matrix 
entries at every level of the hierarchy, so 
the total storage cost of these hierarchical 
matrices could be reduced to O(logN) if the 
i d e n t i c a l e n t r i e s a r e n o t s t o r e d 
redundantly. This aspect is currently 
underutilized in the algebraic variants, 
but seems obvious from the analytic side. 
By making use of the translational 
invariance and rotational symmetry of the 
interaction list one can reduce the amount 
of storage even further. This also results 
in blocking techniques for better cache 
utilization. 
 In Figure 14 we show the results of the 
FMM compression by comparing it with a 
H-matrix. The FMM is calculated on both 
the CPU and GPU. The CPU is a 12 core 
Ivy Bridge (E5-2695v2) and the GPU is a 
P100. GPU kernel launch has a constant 
overhead so for small N it does not show 
O(N) behavior. 
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Figure 15 Memory usage of H2-matrix vs 
FMM 

 Another important aspect of using FMM 
for H-matrix compression is the memory 
usage as shown in Figure 15. The original 
FMM is matrix-free and therefore, 
consumes the least amount of memory. If 
the FMM naively stores all it’s M2L 
translation matrices, it will consume the 
same amount of memory as the HSS. 
However, rotational symmetry and 
translational invariance of the FMM node 
structure can be exploited to make the 
M2L translation matrix have O(1) memory 
usages. Furthermore, if the points are 
positioned with fine grain homogeneity the 
P2P translation matrix can also be stored 
using O(1) memory, which means the 
dense blocks in the resulting H-matrix can 
also be stored with constant memory 
usage. The extension of the FMM 
compression to distributed memory is 
straightforward since we already have a 
MPI implementation of the FMM code. 

5.2	 Hybrid H-matrix-BLR format (lattice H-
matrix) for LU decomposition 

We propose a novel method to parallelize 
the factorization of a hierarchical low-rank 
matrix (H-matrix) on the distributed-
memory computers. By getting rid of the 
hierarchy, the Block Low Rank (BLR) 
f o r m a t n o t o n l y s i m p l i f i e s t h e 
parallelization, but also increases 
concurrency. However, this comes at a 
price of losing the near linear complexity 
of the H-matrix factorization. In the 
present work, we propose a “lattice H-
matrix” format that generalizes the BLR 
format by storing each of the blocks,  

!  
Figure 16 Various hierarchical low-rank 
structures and the lattice H-matrix 
approach 

referred to as lattices, in the H-matrix 
format. Hence, this new format aims to 
combine the parallel scalability of BLR 
with the near linear complexity of H-
matrices. 
 Figure 16 illustrates how a different low-
rank structured matrix can be generated 
from a different partition structure for a 
given problem. Each partition structure 
has its own pros and cons. For instance, 
the H-matrix is the most general low-rank 
matrix structure, and it is an effective way 
of compressing the matrix with small 
numerical ranks. However, the H-matrix 
partition structure usually has the 
irregular structure as shown in Figure 
16(a), which makes it challenging to 
perform some matrix operations on a 
distributed-memory computer (e.g. LU 
factorization). 
 To ease the implementation, and to 
improve the parallel scalability, of the 
distributed matrix operations, simpler 
partition structures have been proposed. 
For instance, by introducing the weak 
admissible condition, we can construct the 
partition structure, which is used to 
generate the Hierarchical Semi-Separable 
(HSS) matrix or the Hierarchically Off- 
Diagonal Low-Rank (HODLR) matrix, and 
is shown in Figure 16(b). Compared with 
the H-matrix structure, the structure is 
s impler and more convenient for 
performing certain matrix operations on 
the distributed-memory computers. 
However, this matrix structure assumes a 
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weak admissibility condition, where all 
off-diagonal blocks are assumed to be low-
rank. When the weak admissibility 
condition is applied to a 3D or higher 
dimensional problem, this structure leads 
to a higher asymptotic complexity due to 
the larger ranks of off-diagonal blocks. 
 Block Low Rank (BLR), shown in Figure 
16(c), is another simpler matrix structure, 
which has the lattice partition structure. 
Though the construction of the BLR 
matrix does not require the block cluster 
tree used to construct the H-matrix, it can 
be constructed by truncating all branches 
of the cluster tree at a certain depth level. 
The partitioning structure of BLR is then 
given by the induced blocks. After the 
structure is defined, the admissible 
condition is verified on each block. The 
memory complexity of the BLR matrix is 
O(n1.5) and is higher than O(n log n) of the 
H-matrix. However, the BLR matrix is a 
simple, nonhierarchical, and effective low-
rank format, especially for the distributed-
memory. For instance, the lattice structure 
observed in the BLR matrix is similar to 
the 2D block layout used in many dense 
matrix operations (e.g., ScaLAPACK), and 
it can use many of the high-performance 
optimization techniques developed for the 
dense matrix operations. 
 Finally, Figure 16(d) shows the hybrid 
partitioning structure of the new lattice H-
matrix that we use in this paper. It 
combines the BLR’s lattice structure with 
the H-matrix partition structure by 
introducing the lattice structure on top of 
the H-matrix structure. In other words, 
the lattice H-matrix utilizes the H-matrix 
format for each lattice block. These lattice 
blocks are then distributed among the 
processes in a 2D block cyclic fashion. It is 
designed to balance the advantages of the 
H-matrix and BLR formats: the high 
compressibility of the H-matrix, which 
reduces the memory and computational 
costs, and the parallel scalability of the 
BLR matrix. Using the lattice H-matrix, 
the complex matrix operations originating 
f rom the H-matr ix s tructure are 
p e r f o r m e d u s i n g t h e t h r e a d e d 
computational kernels. Hence, taken a 
large enough lattice size, the lattice H-
matrix can reduce the memory complexity 
from O(n1.5) of the BLR matrix to O(n log 
n) of the H-matrix. At the same time, the 
l a t t i c e m a t r i x h a s t h e s a m e 
communication pattern as the BLR 
matrix, and it can utilize the high-

performance parallel algorithms and the 
e f f i c i ent communicat i on s chemes 
developed for the dense matrix operations. 
 Our current contributions can be 
summarized as follows: 
・ The new “lattice H-matrix” format 

combines the scalability of BLR with 
the near linear complexity of the H- 
matrix. To the best of our knowledge, 
the proposed format is the first attempt 
to balance the complexity and 
concurrency of these two structured 
low-rank formats for LU factorization. 
The hierarchical structure was 
prev ious ly embedded in a f lat 
structure, but the previous format did 
not consider the balance between the 
complexity and concurrency. 

・ We c o m p a r e t h e f a c t o r i z a t i o n 
performance using the H-matrix, BLR, 
and new lattice H-matrix formats 
under various conditions on shared and 
distributed-memory computers. This 
helps quantify the benefit of the 
formats and determines under what 
conditions which format benefits the 
performance. Such studies are of 
interests to a wide range of audiences 
including the solver developers and 
users. 

・ Our performance comparison includes 
different combinations of MPI and 
OpenMP thread or task configurations. 
For instance, the dynamic task 
scheduling avoids the artif icial 
synchronization and remedies the load 
imbalance from having a large lattice. 
In contrast, without tasking, the 
synchronization point exposes the load 
imba lance a t the end o f each 
factorization phase. 

6. Progress of FY2018 and Future Prospects 
The four goals for FY2018 were; 
“Implement the FMM compression on 
GPUs”, “Extend the FMM compression to 
distributed memory”, “Use the hybrid H-
matrix-BLR format for LU decomposition”, 
and “Optimize the distributed memory LU 
decompos i t i on us ing the ParSEC 
runtime”. 
 We were able to achieve 4 out of the 4 
objectives, although the 4th objective 
required us to change our strategy and the 
code has just been completed at the time 
of writing this final report. We expect to 
submit the results for the 4th objective to 
IEEE Cluster and are currently preparing 
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the new results. 

For “Implementing the FMM compression 
on GPUs”, we were able to finish the GPU 
part during the latter half of FY2018. We 
are currently discussing with Timo Betcke 
to integrate the FMM code with BEM++ — 
one of the most widely used open source 
BEM codes. BEM++ currently uses H-
matrices to accelerate the computation, 
but we have convinced the developers of 
BEM++ that FMM can be much faster. 
This is also related to the second objective 
“Extend the FMM compression to 
distributed memory”. We are discussing 
how to interface the distributed BEM++ 
with the distributed FMM code. We have 
decided to pass the octree between the two 
codes, which only requires passing the 
distributed (hashed) Morton key. 

For “Using the hybrid H-matrix-BLR 
format for LU decomposition”, we have 
achieved our goals with satisfactory 
performance, where the corresponding 
papers have been accepted to IPDPS’18 
[3,4]. Further optimization of the 
HACApK code has been performed with 
advancements in the CPU implementation 
[5], distributed memory implementation 
[6], and GPU implementation [7,8]. 

For “Optimizing the distributed memory 
LU decomposition using the ParSEC 
runt ime” , we have had mul t ip l e 
discussions with the ParSEC developers 
and have decided that ParSEC cannot 
provide the features we need to perform 
LU decomposition of H-matrices. We have 
changed our strategy to use StarPU, 
which is much more user friendly and 
b e t t e r m a i n t a i n e d . O u r S t a r P U 
implementation of LU decomposition of H-
matrices is ready and we plan to submit 
our initial results to IEEE Cluster. 

We not only developed the H-matrix library 
in FY2018 but also applied it to various 
scientific problems including electro-
magnetics [1] and micro-magnetics [2]. A 
new and exciting application that we have 
extended H-matrices to is second order 
optimization methods in deep learning [13]. 
Though, we have found that exploiting the 
Kronecker structure and not the hierarchical 
low-rank structure is a more natural fit 
[9,10]. 
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