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Hierarchical low-rank approximation methods such as H-matrix, H2-matrix, and HSS 
can compress a dense matrix with O(N2) elements into a hierarchical matrix with 
O(N) elements. By using such compressed matrices it is possible to perform matrix-
matrix multiplication, LU decomposition, and eigenvalue computation in near-linear 
time. They are most commonly used in boundary integral problems where the matrix 
to be solved is dense. Hierarchical matrices can also be applied to Schur complements 
that arise in sparse direct solvers, so their applicability extends to fluid, structure, 
and electromagnetic simulations. However, these hierarchical algorithms are rather 
new and highly optimized implementations do not exist at the moment. A highly 
optimized distributed memory GPU implementation is needed to extract the potential 
parallelism of these methods. 
 
 

1. Basic Information 
(1) Collaborating JHPCN Centers  

The University of Tokyo 

Information Technology Center 

 

Tokyo Institute of Technology 

Global Scientific Information and Computing 

Center 

 

Hokkaido University 

Information Initiative Center 

 

Kyoto University 

Academic Center for Computing and Media 

Studies 

(2) Research Areas 
    ☑ Very large-scale numerical computation 

 Very large-scale data processing 

 Very large capacity network technology 

 Very large-scale information systems 

(3) Roles of Project Members 

Rio Yokota (Tokyo Institute of Technology) 

Low-rank approximation using FMM and its 

GPU-MPI implementation 

 

Ichitaro Yamazaki (University of Tennessee) 

Development of distributed memory runtime 

–ParSEC and blocked BLAS library for GPU –

block MAGMA 

 

Akihiro Ida (University of Tokyo) 

Feature extension of hybrid MPI/OpenMP H-

matrix code –HACApK, and its integration 

with ParSEC and block MAGMA 

 

Takeshi Iwashita (Hokkaido University) 

Application of HACApK to boundary integral 

solvers for electromagnetics, and 

optimization of H-matrix-vector product 

 

Takayuki Aoki (Tokyo Institute of 

Technology) 

Application of HACApK to Poisson solvers 

for multiphase flows 

 

Satoshi Oshima (University of Tokyo) 

GPU implementation of HACApK and 

integration with MAGMA 

 

Taku Hiraishi (Kyoto University) 

Dynamic load-balancing of HACApK 
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Kengo Nakajima (University of Tokyo) 

Extend capability of HACApK within the 

ppOpen-HPC framework. 

 

Jack Dongarra (University of Tennessee) 

Development of distributed memory runtime 

–ParSEC and blocked BLAS library for GPU –

block MAGMA 

 

2. Purpose and Significance of the Research 
 H-matrices can reduce the arithmetic 

complexity of dense matrix-multiplication 

and factorization from O(N3) to O(Nlog2N) 

but still attain high Flop/s on GPUs by 

making use of batched BLAS operations. 

Conventional fast algorithms with low 

arithmetic complexity such as FFT, sparse 

linear algebra, and multigrid methods have 

low arithmetic intensity and are memory-

bound on most modern architectures. 

Conversely, methods with high arithmetic 

intensity like dense linear algebra and N-

body methods can remain compute-bound 

on modern architectures, but tend to have a 

high arithmetic complexity and waste many 

Flop/s. H-matrices have a rare combination 

of high arithmetic intensity and low 

arithmetic complexity, which makes them an 

interesting alternative to many existing 

algorithms on future architectures. 

 H-matrices were initially applied to 

boundary integral problems in 

electromagnetics, seismic, and fluid 

simulations. However, H-matrices have 

recently been growing in popularity in new 

fields that can benefit from approximate 

dense linear algebra operations such as 

machine learning and statistics/big data. The 

broad applicability of H-matrices makes it a 

worthwhile algorithm to heavily optimize on 

many-core and accelerator architectures. 

 One of the goals of this project is to 
facilitate the transition to the algorithm of 
the future, by providing a highly optimized 
H-matrix library that users can simply call 
from their existing framework. An 
important aspect of this approach is that 
our code will be optimized on CPU, GPU, 
and Xeon Phi, which represents the range 
of architectures for JHPCN platforms 
during the coming years.  

3. Significance as a JHPCN Joint Research 
Project 
 Each member of this project has different 

expertise, all of which are essential for the 

development and verification of a high 

performance H-matrix library. R. Yokota is 

the developer of exaFMM, which is a highly 

scalable and GPU equipped FMM code have 

the same data structure as an HLRA code. A. 

Ida and T. Iwashita are developers of 

HACApK – a hybrid MPI-OpenMP 

implementation of the HLRA. T. Hiraishi has 

experience in load-balancing for distributed 

memory H-matrix codes. I. Yamazaki and J. 

Dongarra are developers of dense linear 

algebra libraries such as MAGMA and 

PLASMA. T. Aoki has expertise in large scale 

fluid dynamics simulations that make use of 

distributed memory and GPUs. S. Oshima has 

expertise in tuning solvers for GPUs and Xeon 

Phi. K. Nakajima has expertise in parallel 

preconditioned iterative solvers and their 

application in CFD with AMR. The 

combination of these expertise is necessary for 

achieving the goals mentioned above.  

 Furthermore, each member already has 

highly optimized code for each component, 

which gives us an advantage over other 

groups that are writing an H-matrix code 
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from scratch. There are a few existing H-

matrix implementations, but they are limited 

to shared memory and have not been ported 

to GPUs. To our knowledge, HACApK is the 

only multi-GPU H-matrix code available at 

the moment. This could only have been done 

through a JHPCN international collaboration 

between the experts in each area. 

4. Outline of the Research Achievements up 
to FY2016 

 Our goal is to have a GPU implementation 

of our H-matrix code, and extend it to LU 

factorizations and use it as a preconditioner. 

To this end, understanding the relation 

between H-matrices and FMM is critical, 

because FMM is known to perform well on 

GPUs and have recently possessed the ability 

to be used not only as a mat-vec, but also a 

preconditioner [4]. Therefore, during the first 

half of FY2016 we focused on understanding 

the relation between H-matrices and FMM, 

because this is the shortest path to achieving 

our objective. 

 FMM and H-matrices lie at the opposite 

ends of the spectrum of hierarchical low-rank 

approximation methods , which are shown in 

Figure 1. ``Compressed operators” in Figure 

1 represents a method which recompresses 

the FMM translation matrix by using SVD. 

This method was originally designed to 

accelerate the translation of multipole 

expansion in FMM. When this technique is 

used the FMM becomes very similar to a H2-

matrix or HSS matrix.  

 
Figure 1. Compute-memory tradeoff in 

hierarchical low-rank approximation method 

 
Figure 2  Calculation time for a single 

matrix-vector multiplication including setup 

time for the Green’s function matrix of a 2-D 

Laplace, 3-D Laplace, and 3-D Helmholtz 

equation 

 

Therefore, we perform a direct comparison 

between FMM and HSS. We use the 2-D 

Laplace, 3-D Laplace, and 3-D Helmholtz 

equations as the problem of interest, and 

generate the matrices from the Green’s 

function. A single core of a  12 core Ivy 

Bridge (E5-2695v2) is used for the 

calculations. In Figure 2, we show the 

calculation time for the FMM and HSS. The x-

axis is the size of the matrix, and the y-axis is 

the calculation time in seconds. FMM has a 

constant overhead so for small N it does not 

show O(N) behavior. For sufficiently large N, 

both FMM and HSS show O(N) behavior. It 

can be seen that FMM is about 1000 times 

faster than HSS. This is due to the large 

calculation cost of the algebraic compression 

that HSS does, whereas the FMM does not. 

 Another important aspect of our work in the 

first half of FY2016 is the load-balancing of 

the distributed memory implementation. The 

decomposition of a hierarchical matrix is 

shown in Figure 3. In the present work, we 

improve the load-balance by introducing a  
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Figure 3. Domain decomposition of H-matrix 

 

 

Figure 4. Parallel speedup of H-matrix 

 

dynamic load-balancing scheme that predicts 

the ranks of each block. We use a test problem 

that gave poor load-balance for a static load-

balancing scheme, to validate our new 

dynamic load-balancing scheme. We use 

dynamic task scheduling in OpenMP. The 

solid line in Figure 4 is the result when we use 

dynamic load-balancing. We can see that all 

threads are calculating similar number of 

elements.  

For improving the scalability of the 

distributed memory H-matrix codes, we 

considered the possibility of importing 

various techniques from FMM. We have 

studies the communication patterns of FMM  

 
Figure 5. Performance of BiCGSTAB using 

HACApK for the mat-vec on multiple GPUs. 

 

extensively and have constructed a 

performance model that predicts the 

behavior on the largest supercomputers such 

as Mira, Titan, and Shaheen. This 

performance model was used to construct an 

asymptotically superior communication 

scheme for FMM in FY2017 [13]. The 

communication pattern of H-matrices are 

identical to FMM so these techniques should 

be directly applicable to these algebraic 

variants of FMM. 

The GPU implementation of HACApK was 

achieved through the use of MAGMA. Since 

one of the developers of MAGMA – Ichitaro 

Yamazaki was a collaborator in this project, 

the integration of MAGMA with HACApK 

was done in a very short amount of time. We 

were therefore able to have a multi-GPU 

version by the end of FY2016. 

The performance of HACApK on multi-GPU 

is shown in Figure 5, where ``Comp” is the 

computational kernels, ``Copy” is the CUDA 

memory copy time, ``Comm” is the MPI 

communication. The MPI communication 

time eventually becomes the bottleneck 

because the mat-vec computation part takes 

very little time on the GPU. 
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5. Details of FY2017 Research Achievements 

5.1 H-matrix-vector multiplication on multi-
GPUs 

During FY2017, we have made significant 

progress in the use of batched MAGMA with 

HACApK, and its multi-GPU implementation. 

We have validated its performance by 

applying it to the matrix-vector multiplication 

in a BiCGSTAB solver. 

 Though the low-rank compression reduces 

the cost of the matrix multiply, in many cases, 

the BiCG’s iteration time is still dominated by 

this Hierarchical Matrix Vector multiply 

(HMVM). To reduce the iteration time using 

a distributed-memory computer, HACApK 

distributes the contiguous, but not disjoint, 

rows of the matrix among the processes (see 

Figure 3 for an illustration). Then, each 

process performs HMVM with its local 

submatrix. With this parallelization scheme, 

the only required inter-process comm-

unication is the all-gather needed after 

HMVM to form the global vector on each 

process (using MPI_Allgatherv). 

 This parallelization scheme is motivated 

by two performance properties of the solver: 

1) the BiCG’s computation time is dominated 

by HMVM, while the time needed for the 

remaining vector operations is insignificant 

in the computation time and 2) the redundant 

computation of the vector operations avoids 

the global all-reduces needed to compute the 

six dot-products for each BICG iteration, 

which can be much more expensive 

compared with the arithmetic operations. 

Hence, by redundantly performing the vector 

operations, this parallelization scheme aims 

to balance out two conflicting performance 

factors: distributing the computation with a 

minimum inter-process communication. 

 We conducted all the experiments in double 

precision, and used the matrices from 

electrostatic field simulations with perfect 

conductors of two particular shapes: 

•  Sphere: pairs of perfect conductors with 
the shape of a sphere. For each pair, one 

sphere has its electric potential set to be 1 Volt, 

while the other has the electric potential of −1 

Volt. We use the boundary value of 0 Volt at 

infinity and analyze the induced electrical 

charge on the surface of the spheres. 

• Human: perfect conductors with the shape 
of a humanoid who is standing on a uniform 

2D grid on a uniform electric field. The 

surface of the humanoid is divided into 2, 359, 

680 triangular elements and the induced 

electrical charge on the humanoid’s surface 

was calculated using an indirect BEM with a 

single layer potential formulation and step 

functions as the base function for the BEM. 

 Table 1 lists our test matrices. The large-

scale matrices 8ms and 20ms were used for 

the inner-iteration to precondition the linear 

system. 

 

Table 1. Test matrices where “compression%” 

is the ratio of the total number of numerical 

values in the compressed matrix over 

nlog2(n). 
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Figure 6. Block sizes in test matrix ``100ts” 

 

 All of the compressed blocks have rank one 

and we fixed the number of inner iterations 

to be 20 for our experiments. Figure 6 shows 

the sizes of the blocks in the matrix 100ts. We 

see a wide range of the block sizes where all 

the blocks on the diagonal are square and 

dense, while off-diagonal blocks can be either 

dense or compressed and are either tall-

skinny or wide-short. To utilize the GPU, 

each process divides its local dgemv tasks 

into several batches (e.g., a batch with a fixed 

number of dgemv’s), and then calls 

dgemv_vbatched for each batch. 

dgemv_vbatched can execute dgemv’s with 

variable matrix sizes in a single kernel launch. 

However, the performance of dgemv_ 

vbatched can be much lower than its fixed-

size counterpart. This is especially true when 

there is a wide range of matrix sizes in the 

single batch. In order to improve the 

performance of dgemv_vbatched, we 

examined several schemes to sort the blocks 

of A, on which dgemv’s operate.  

 In Figure 7, the blocks were sorted in the 

ascending order of their numbers of rows, and 

in Figure 8, we first grouped the blocks 

according to the number of rows (the k-th  

 

Figure 7. Matrix 100ts sorted by the number 

of rows 

 
Figure 8. Matrix 100ts sorted by number of 

rows, and then by number of columns within 

group. 

 

group contains the block with the number of 

rows in the range between 8(k − 1) + 1 and 8k), 

and then we order the blocks in the same 

group according to their numbers of columns. 

 Figures 9 and 10 show the effects of these 

two sorting schemes on the kernel 

performance for the matrix 100ts. The figure 

also shows the performance of the fixed-size 

batched kernel for each block size, which we 

consider as the upper bound on the 

performance of the variable-size kernel. We 

clearly see that the performance can be  
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Figure 9. Sorting scheme of Figure 7 with 

fixed batch count. 

 
Figure 10. Sorting scheme of Figure 8 with 

fixed batch count. 

 

significantly improved by properly sorting 

the blocks (speedups of up to 2.5×) and the 

variable size kernel may obtain the 

performance closer to that of the fixed-size 

kernel. 

 Figures 11 and 12 show the effects of the 

GPU kernels on the BiCG performance on 

Tsubame-3 and Reedbush-H, respectively. 

For the performance without the GPUs, we 

bind each process to a socket and launch one 

OpenMP thread on each of the available cores 

of the socket. We found this process/thread 

configuration typically gives the best  

 
(a) Strong scaling 100ts       (b) On 8 nodes 

Figure 11. Performance on Tsubame-3. The blue 

markers show the solution time with original 

HACApK without GPUs, while the bars are with 

the GPUs. 

 

 
(a) Strong scaling 100ts       (b) On 8 nodes 

Figure 12. Performance on Reedbush-H. The blue 

markers show the solution time with original 

HACApK without GPUs, while the bars are with 

the GPUs. 

 

performance of the hybrid MPI/OpenMP 

implementation. With the GPUs, we launch 

one process per GPU (i.e., four or two 

processes per node on Tsubame-3 or 

Reedbush-H). The figures clearly show that 

the GPUs have reduced the iteration time 

significantly, obtaining the speedups of 

about 4.2× and 4.5× on eight nodes of 

Tsubame-3 and Reedbush-H, respectively (in 

Figures 11(b) and 12(b)). 

5.2 H-matrix LU-decomposition on distributed 
memory 

 We propose a novel method to parallelize 

the factorization of a hierarchical low-rank 

matrix (H-matrix) on distributed memory 

computers. This problem is much more 

difficult than the parallelization of a dense 

matrix factorization due to the hierarchical 
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block structure of the matrix, and it is much 

more difficult than the H-matrix vector 

multiplication due to the dataflow of the 

factorization. Getting rid of the hierarchy, the 

Block Low Rank (BLR) format not only 

simplifies the parallelization, but also 

increases concurrency. However, this comes 

at a price of loosing the near linear 

complexity of the H-matrix factorization. In 

the present work, we propose a “lattice H-

matrix” factorization that combines the 

parallel scalability of BLR with the near linear 

complexity of H-matrix. To the extent of our 

knowledge, there have been no such attempts 

to balance the complexity and concurrency of 

two structured low-rank approximation 

methods. 

 We can generate any of the low-rank 

structures shown in Figure 13 by controlling 

the admissibility condition and the branch 

truncation of the block cluster tree during the 

construction of the H-matrix. Hence, all 

structured low-rank matrices can be 

regarded as special types of the H-matrices, 

as illustrated in Figure 13 for a given problem.  

 Each partitioning structure has different 

pros and cons. For instance, the H-matrix is 

the most general low-rank matrix structure, 

and it is an effective way of compressing the 

matrix with small numerical ranks. However, 

it usually has a complicated partitioning 

structure as shown in Figure 13(a), which 

makes it challenging to perform some matrix 

operations on a distributed-memory 

computer (e.g. LU factorization).  

 To improve the parallel scalability of the 

matrix operations, simpler partitioning 

structures have been proposed. For instance, 

by setting a weak admissibility condition, we 

can construct the partitioning structure 

 

Figure 13 Illustration of popular low-rank 

structures generated for the same problem: 

(a) general H-matrix and its conversion to (b) 

Hierarchically Off-Diagonal Low-Rank 

(HODLR) layout, (c) Block Low-Rank (BLR) 

layout, and (d) lattice H-matrix layout. Blocks 

painted in deep red show dense submatrices, 

and blocks in light red indicate low-rank 

submatrices.  

 

shown in Figure 13(b), which can be seen in 

the Hierarchical Semi-Separable (HSS) 

matrix or in the Hierarchically Off-Diagonal 

Low-Rank (HODLR) matrix. Compared with 

the H-matrix structure, this structure is 

simpler and more convenient for per- 

forming certain matrix operations on 

distributed-memory. However, this matrix 

structure assumes a weak admissibility 

condition, where all off-diagonal blocks are 

assumed to be low-rank. When the weak 

admissibility condition is applied to a 3D or 

higher dimensional problem, this structure 

leads to a higher asymptotic complexity due 

to the larger ranks of off-diagonal blocks. 
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 Block Low Rank (BLR), shown in Figure 

13(c), is another simpler matrix structure. 

Though the construction of the BLR matrix 

does not require the block cluster tree used to 

construct the H-matrix, it can be constructed 

by truncating all branches of the cluster tree 

at a certain depth level. The partitioning 

structure of BLR is then given by the induced 

blocks in the block cluster tree. The 

admissible condition is verified on each block 

after the structure is defined. The memory 

complexity of the BLR matrix is O(n1.5) and is 

higher than O(nlogn) of the H-matrix. 

However, the BLR matrix is a simple, 

nonhierarchical, and effective low-rank 

layout, especially for the distributed-memory. 

In particular, the BLR structure has the block 

layout similar to the 2D block layout used in 

many dense matrix operations, and it can use 

many of the high-performance optimization 

techniques developed for the dense matrix 

operations. 

 Figure 13(d) shows the partitioning 

structures of the lattice H-matrix that we use 

in this paper. It combines the structures of 

BLR with the H-matrix by introducing the 

lattice structure on top of the H-matrix. In 

other words, the lattice H-matrix utilizes the 

H-matrix format for each block of the BLR 

matrix. These lattices are then distributed 

among the processes in a 2D block cyclic 

fashion. It is designed to balance the 

advantages of the H and BLR matrices: the 

high compressibility of the H- matrix, which 

reduces the memory and computational costs, 

and the parallel scalability of the BLR matrix. 

Using the lattice H-matrix, the complex 

matrix operations originating from the H-

matrix structure are performed using the 

threaded computational kernels.  

 
Figure 14 Effects of the leaf sizes on the 

factorization time, and the computational 

and storage costs of the factorization. 

 

Taken a large enough lattice size, the lattice 

H-matrix can reduce the memory complexity 

from O(n1.5) of the BLR matrix to O(nlogn) of 

the H-matrix. At the same time, the lattice 

matrix has the same communication pattern 

as the BLR matrix, and it can utilize the high-

performance parallel algorithms and the 

efficient communication schemes developed 

for the dense matrix operations.  

 We conducted our experiments on the on 

the Reedbush-L supercomputer at the 

University of Tokyo, and the TSUBAME3.0 

supercomputer at the Tokyo Institute of 

Technology, and also the Edison super-

computer at the National Energy Research 

Scientific Computing Center (NERSC). We 

used Intel MPI compiler mpiifort and 

mpiicpc of version 18.1.163. On all systems, 

the code was compiled using the -O3 

optimization flag, and linked to sequential 

MKL version 2018.1.163. 

 We first study the performance of the 

threaded BLR LU (BLU) and threaded H-

matrix LU (HLU) factorization on the shared-

memory CPUs. One of the critical parameters 

that affect the factorization performance is  
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Figure 15  Performance of the shared-

memory factorization. Left graph shows the 

breakdown of the flop counts needed for 

different phases of factorization (diagonal 

factorization, computation of off-diagonal 

tiles in the panel, updating either compressed 

or dense blocks, and ACA), relative to the 

total flop count for BLR. Right tables shows 

the factorization time in seconds using 

different numbers of threads on one node.  

 

 

the leaf size. Hence, we first seek for an 

optimal leaf size that obtains the shortest 

factorization time. Figure 14 shows the effects 

of the leaf size on the factorization 

performance. A larger leaf size tends to 

increase both the computational and storage 

costs of the BLU factorization, but it also 

improves the performance of the BLAS and 

LAPACK subroutines used for the local 

computation. In many cases, BLU obtained 

the fastest factorization time using the leaf 

size that is larger than that obtained the 

minimum storage or computation. The 

optimal leaf size also tends to increase with 

the increase in the matrix dimension. In 

contrast, HLU’s factorization time was less 

sensitive to the leaf size. Overall, for our test 

matrices, the leaf size of 𝑂𝑂(√𝑘𝑘𝑘𝑘) with k = 5 
was a good choice for BLU, and that is what 

we use for the rest of the experiments. 

 
Figure 16 Computational and storage costs 

with varying matrix sizes. The low-rank 

compression greatly reduces the costs of the 

factorization, e.g., for the matrices in this 

figure, the dense factorization would require 

the computational costs of 0.7, 667, 2250, 6352, 

and 25743 Tflops, and the storage costs of 0.8, 

80, 180, 360, and 914 GB.  

 

 For HLU, we use the fixed leaf size of 300. 

With these choices of the leaf sizes that obtain 

the near-optimal performance of each 

algorithm, BLU needed a much larger leaf 

size and had much higher storage and 

computational costs than HLU, especially for 

a large matrix. 

 Figure 15(a) shows the relative flop counts 

for different phases of the factorization. We 

see that the flop count is dominated by the 

trailing submatrix update that is well suited 

for the parallelization. Figure 15(b) and 15(c) 

show the resulting thread scalability of the 

two factorization algorithms. Since we used a 

fixed leaf size for HLU, its scalability was 

lower than BLU’s for a small matrix. For 

instance, for the matrix 1ts, there were only 

three diagonal blocks for HLU. On the other 

hand, for a large matrix, HLU was often  
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Figure 17 Effects of MPI/OpenMP 

configurations on the factorization time for 

the matrix 100ts with 18 threads per process 

on Reedbush-L.  

 

faster than BLU due to HLU’s lower 

computational cost. 

 Figure 16 visualizes the computational and 

storage costs of BLU and HLU for varying 

matrix dimension. The difference between 

the costs of the two algorithms tends to 

increase with the increase in the matrix 

dimension. The cost of the new lattice LU is 

between those of BLU and HLU depending 

on the lattice size used.  

 We now compare the performance of BLU 

and the new LLU (lattice LU) on the 

distributed-memory computer. We first 

study the effects of the lattice size with the 

increasing number of processes (e.g., the 

storage or computational cost per process). 

For LLU, we used the fixed leaf size used for 

HLU (i.e., 300). As we reduce the lattice size, 

the H-matrix is split into smaller lattices, 

becoming closer to BLR. The factorization 

costs did not significantly change using 

different leaf sizes. 

 Figure 17 shows the performance of LLU 

using three different MPI/OpenMP  

 
Figure 18 Strong parallel scaling for 332ts 

with 18 threads per process on Reedbush-L. 

The imbalance is the ratio of the difference 

between the maximum and the minimum 

loads among the processes over the average 

load.  

 

configurations: i.e., 1) flat-MPI with one 

process per core, 2) MPI+OpenMP with one 

process per socket and one thread per core 

but with a synchronization among the local 

threads before each phase of factorization, 

and 3) MPI+OpenMP tasks. We see that the 

hybrid MPI/OpenMP programming often 

reduces the cost of inter-process 

communication, performing better than the 

flat-MPI. The performance can be further 

improved using tasks that avoid the artificial 

synchronizations and obtain a better core 

utilization. 

 To accommodate the large storage costs of 

BLU, we conducted the remaining 

experiments on Reedbush-L. Figure 16(a) 

shows the load imbalance among the 

processes for computing BLU and HLU. 

Since HLU’s lattice size is larger than BLU’s 

tile size, HLU had a greater load imbalance, 

especially with a larger process count. One of 

our motivations for using OpenMP task is to 

reduce the effects of the load imbalance on 

the parallel scalability of HLU or BLU. 
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6. Progress of FY2017 and Future Prospects 

6.1 Progress of FY2017 including self- 
evaluation with respect to the research plan 

The two main goals of the fiscal year 2017 

are 1) Implement the GPU version of 

HACApK using block MAGMA, which can 

calculate streams of small matrices efficiently 

on GPUs, 2) Extend HACApK to perform a 

LU decomposition of a hierarchical version of 

H-matrices instead of the current non-

hierarchical version. We have achieved our 

goals with satisfactory performance, where 

the former has been accepted to IPDPS’18 

[5,6] and the latter has been submitted to 

SC’18. 

For item 1), we have made significant 

progress as shown in section 5.1. We ported 

the hierarchical-matrix BiCG solver onto 

GPU clusters [5], and investigated several 

techniques to improve the performance of the 

batched GPU kernel (sorting the tasks, 

dividing them into multiple batches of 

different batch sizes [9], and using GPU 

streams to execute multiple batches in 

parallel) [16]. We hope that these techniques 

will be integrated into the future generation 

of the batched kernel along with a runtime 

analysis and tuning. We have also studied 

several techniques to reduce the inter-GPU 

communication. As the heterogeneous node 

architecture becomes increasingly complex 

and the cost of the inter-GPU communication 

increases, these techniques likely become 

critical to many applications running on 

GPUs. We have observed a great potential of 

the sophisticated MPI communication 

strategies that complement our studies 

[12,20], and we plan to investigate its 

performance on different architectures (e.g., 

non-blocking collective on Summit). We 

would also like to investigate other 

algorithmic techniques to address the 

communication costs (e.g., 2D partitioning, 

empty off-diagonal blocks with rank zero). 

Though we ported only the linear solver onto 

the GPUs, we plan to port other parts of the 

simulation (e.g., generation or compression 

of the matrix). We have also extended 

HACApK to run on the Xeon Phi Knights 

Landing [7,17,25]. This port is more 

straightforward than that of the GPU [8,22], 

since it is merely changing the BLAS library 

to the AVX512 optimized version and 

compiling for the Knights Landing. We have 

also ported HACApK to run on FPGAs using 

OpenCL [18,19]. 

For item 2), we have proposed a novel 

method that hybridizes the BLR and H-

matrix to achieve optimal balance between 

the complexity and concurrency on 

distributed memory architectures. The 

algorithm partitions the matrix into 2D H-

submatrices, called lattices, and distributes 

the lattices in a 2D cyclic pattern. Compared 

with the standard H-matrix factorization, the 

lattice simplifies both the communication 

pattern and the parallel computation, while 

compared with the block low-rank (BLR) 

layout, the lattice reduces both the storage 

and computational costs. Our experimental 

results demonstrate that the lattice- based LU 

(LLU) can obtain significant speedups over 

BLR, while using a smaller storage. 

We not only developed the H-matrix library 

in FY2017 but also applied it to various 

scientific problems including electro-

magnetics [1,24], micromagnetics [3,26], 

which required the parallelization of BEM 

[2,13]. A new and exciting application that we 

have extended H-matrices to is machine 
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learning where we observed significant 

speedup by using low-rank approximations 

[10, 11, 14]. 

6.2 Future prospects 

We are working to improve the parallel 

performance of LLU (e.g., accumulating 

multiple updates before compression, using 

task-priority for reducing idling time, and 

examining the potential of other runtime 

systems). Though the low-rank compression 

reduces the communication volume, the 

communication can still be the parallel 

performance bottleneck. We are looking to 

reduce this bottleneck by integrating other 

techniques (e.g., 2.5D factorization). The 

selection of the optimal lattice size is critical 

to obtain good performance of LLU, 

especially with an increase in the process 

count. We are studying theoretical or 

experimental way of picking a proper lattice 

size. Another critical parameter is the leaf 

size. For our experiment with LLU, we used 

the leaf size that obtained a good 

performance of HLU. We are examining the 

effects of the lattice size on the optimal leaf 

size for HLU’s performance. Other future 

work including using the factors as a 

preconditioner and accelerating the 

factorization process using GPUs. Our focus 

is on HACApK that generates a particular 

matrix partition and compression, and we 

cannot directly use existing algebraic linear 

solver packages. However, we would like to 

extend our study by examining other solvers 

for the applications of our interests. In fact, 

our layered interface allows any partitioning 

structure to be imported into our solver, and 

our solver can be used as an algebraic solver. 
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