
Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
Final Report for JHPCN Joint Research of FY 2017, May 2018

1

jh170057-NAHI

Hierarchical Low-Rank Approximation Methods on Distributed Memory
and GPUs

Rio Yokota（Tokyo Institute of Technology）

Hierarchical low-rank approximation methods such as H-matrix, H2-matrix, and HSS
can compress a dense matrix with O(N2) elements into a hierarchical matrix with
O(N) elements. By using such compressed matrices it is possible to perform matrix-
matrix multiplication, LU decomposition, and eigenvalue computation in near-linear
time. They are most commonly used in boundary integral problems where the matrix
to be solved is dense. Hierarchical matrices can also be applied to Schur complements
that arise in sparse direct solvers, so their applicability extends to fluid, structure,
and electromagnetic simulations. However, these hierarchical algorithms are rather
new and highly optimized implementations do not exist at the moment. A highly
optimized distributed memory GPU implementation is needed to extract the potential
parallelism of these methods.

1. Basic Information
(1) Collaborating JHPCN Centers

The University of Tokyo

Information Technology Center

Tokyo Institute of Technology

Global Scientific Information and Computing

Center

Hokkaido University

Information Initiative Center

Kyoto University

Academic Center for Computing and Media

Studies

(2) Research Areas
 ☑ Very large-scale numerical computation

 Very large-scale data processing

 Very large capacity network technology

 Very large-scale information systems

(3) Roles of Project Members

Rio Yokota (Tokyo Institute of Technology)

Low-rank approximation using FMM and its

GPU-MPI implementation

Ichitaro Yamazaki (University of Tennessee)

Development of distributed memory runtime

–ParSEC and blocked BLAS library for GPU –

block MAGMA

Akihiro Ida (University of Tokyo)

Feature extension of hybrid MPI/OpenMP H-

matrix code –HACApK, and its integration

with ParSEC and block MAGMA

Takeshi Iwashita (Hokkaido University)

Application of HACApK to boundary integral

solvers for electromagnetics, and

optimization of H-matrix-vector product

Takayuki Aoki (Tokyo Institute of

Technology)

Application of HACApK to Poisson solvers

for multiphase flows

Satoshi Oshima (University of Tokyo)

GPU implementation of HACApK and

integration with MAGMA

Taku Hiraishi (Kyoto University)

Dynamic load-balancing of HACApK

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
Final Report for JHPCN Joint Research of FY 2017, May 2018

2

Kengo Nakajima (University of Tokyo)

Extend capability of HACApK within the

ppOpen-HPC framework.

Jack Dongarra (University of Tennessee)

Development of distributed memory runtime

–ParSEC and blocked BLAS library for GPU –

block MAGMA

2. Purpose and Significance of the Research
 H-matrices can reduce the arithmetic

complexity of dense matrix-multiplication

and factorization from O(N3) to O(Nlog2N)

but still attain high Flop/s on GPUs by

making use of batched BLAS operations.

Conventional fast algorithms with low

arithmetic complexity such as FFT, sparse

linear algebra, and multigrid methods have

low arithmetic intensity and are memory-

bound on most modern architectures.

Conversely, methods with high arithmetic

intensity like dense linear algebra and N-

body methods can remain compute-bound

on modern architectures, but tend to have a

high arithmetic complexity and waste many

Flop/s. H-matrices have a rare combination

of high arithmetic intensity and low

arithmetic complexity, which makes them an

interesting alternative to many existing

algorithms on future architectures.

 H-matrices were initially applied to

boundary integral problems in

electromagnetics, seismic, and fluid

simulations. However, H-matrices have

recently been growing in popularity in new

fields that can benefit from approximate

dense linear algebra operations such as

machine learning and statistics/big data. The

broad applicability of H-matrices makes it a

worthwhile algorithm to heavily optimize on

many-core and accelerator architectures.

 One of the goals of this project is to
facilitate the transition to the algorithm of
the future, by providing a highly optimized
H-matrix library that users can simply call
from their existing framework. An
important aspect of this approach is that
our code will be optimized on CPU, GPU,
and Xeon Phi, which represents the range
of architectures for JHPCN platforms
during the coming years.

3. Significance as a JHPCN Joint Research
Project
 Each member of this project has different

expertise, all of which are essential for the

development and verification of a high

performance H-matrix library. R. Yokota is

the developer of exaFMM, which is a highly

scalable and GPU equipped FMM code have

the same data structure as an HLRA code. A.

Ida and T. Iwashita are developers of

HACApK – a hybrid MPI-OpenMP

implementation of the HLRA. T. Hiraishi has

experience in load-balancing for distributed

memory H-matrix codes. I. Yamazaki and J.

Dongarra are developers of dense linear

algebra libraries such as MAGMA and

PLASMA. T. Aoki has expertise in large scale

fluid dynamics simulations that make use of

distributed memory and GPUs. S. Oshima has

expertise in tuning solvers for GPUs and Xeon

Phi. K. Nakajima has expertise in parallel

preconditioned iterative solvers and their

application in CFD with AMR. The

combination of these expertise is necessary for

achieving the goals mentioned above.

 Furthermore, each member already has

highly optimized code for each component,

which gives us an advantage over other

groups that are writing an H-matrix code

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
Final Report for JHPCN Joint Research of FY 2017, May 2018

3

from scratch. There are a few existing H-

matrix implementations, but they are limited

to shared memory and have not been ported

to GPUs. To our knowledge, HACApK is the

only multi-GPU H-matrix code available at

the moment. This could only have been done

through a JHPCN international collaboration

between the experts in each area.

4. Outline of the Research Achievements up
to FY2016

 Our goal is to have a GPU implementation

of our H-matrix code, and extend it to LU

factorizations and use it as a preconditioner.

To this end, understanding the relation

between H-matrices and FMM is critical,

because FMM is known to perform well on

GPUs and have recently possessed the ability

to be used not only as a mat-vec, but also a

preconditioner [4]. Therefore, during the first

half of FY2016 we focused on understanding

the relation between H-matrices and FMM,

because this is the shortest path to achieving

our objective.

 FMM and H-matrices lie at the opposite

ends of the spectrum of hierarchical low-rank

approximation methods , which are shown in

Figure 1. ``Compressed operators” in Figure

1 represents a method which recompresses

the FMM translation matrix by using SVD.

This method was originally designed to

accelerate the translation of multipole

expansion in FMM. When this technique is

used the FMM becomes very similar to a H2-

matrix or HSS matrix.

Figure 1. Compute-memory tradeoff in

hierarchical low-rank approximation method

Figure 2 Calculation time for a single

matrix-vector multiplication including setup

time for the Green’s function matrix of a 2-D

Laplace, 3-D Laplace, and 3-D Helmholtz

equation

Therefore, we perform a direct comparison

between FMM and HSS. We use the 2-D

Laplace, 3-D Laplace, and 3-D Helmholtz

equations as the problem of interest, and

generate the matrices from the Green’s

function. A single core of a 12 core Ivy

Bridge (E5-2695v2) is used for the

calculations. In Figure 2, we show the

calculation time for the FMM and HSS. The x-

axis is the size of the matrix, and the y-axis is

the calculation time in seconds. FMM has a

constant overhead so for small N it does not

show O(N) behavior. For sufficiently large N,

both FMM and HSS show O(N) behavior. It

can be seen that FMM is about 1000 times

faster than HSS. This is due to the large

calculation cost of the algebraic compression

that HSS does, whereas the FMM does not.

 Another important aspect of our work in the

first half of FY2016 is the load-balancing of

the distributed memory implementation. The

decomposition of a hierarchical matrix is

shown in Figure 3. In the present work, we

improve the load-balance by introducing a

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
Final Report for JHPCN Joint Research of FY 2017, May 2018

4

Figure 3. Domain decomposition of H-matrix

Figure 4. Parallel speedup of H-matrix

dynamic load-balancing scheme that predicts

the ranks of each block. We use a test problem

that gave poor load-balance for a static load-

balancing scheme, to validate our new

dynamic load-balancing scheme. We use

dynamic task scheduling in OpenMP. The

solid line in Figure 4 is the result when we use

dynamic load-balancing. We can see that all

threads are calculating similar number of

elements.

For improving the scalability of the

distributed memory H-matrix codes, we

considered the possibility of importing

various techniques from FMM. We have

studies the communication patterns of FMM

Figure 5. Performance of BiCGSTAB using

HACApK for the mat-vec on multiple GPUs.

extensively and have constructed a

performance model that predicts the

behavior on the largest supercomputers such

as Mira, Titan, and Shaheen. This

performance model was used to construct an

asymptotically superior communication

scheme for FMM in FY2017 [13]. The

communication pattern of H-matrices are

identical to FMM so these techniques should

be directly applicable to these algebraic

variants of FMM.

The GPU implementation of HACApK was

achieved through the use of MAGMA. Since

one of the developers of MAGMA – Ichitaro

Yamazaki was a collaborator in this project,

the integration of MAGMA with HACApK

was done in a very short amount of time. We

were therefore able to have a multi-GPU

version by the end of FY2016.

The performance of HACApK on multi-GPU

is shown in Figure 5, where ``Comp” is the

computational kernels, ``Copy” is the CUDA

memory copy time, ``Comm” is the MPI

communication. The MPI communication

time eventually becomes the bottleneck

because the mat-vec computation part takes

very little time on the GPU.

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
Final Report for JHPCN Joint Research of FY 2017, May 2018

5

5. Details of FY2017 Research Achievements

5.1 H-matrix-vector multiplication on multi-
GPUs

During FY2017, we have made significant

progress in the use of batched MAGMA with

HACApK, and its multi-GPU implementation.

We have validated its performance by

applying it to the matrix-vector multiplication

in a BiCGSTAB solver.

 Though the low-rank compression reduces

the cost of the matrix multiply, in many cases,

the BiCG’s iteration time is still dominated by

this Hierarchical Matrix Vector multiply

(HMVM). To reduce the iteration time using

a distributed-memory computer, HACApK

distributes the contiguous, but not disjoint,

rows of the matrix among the processes (see

Figure 3 for an illustration). Then, each

process performs HMVM with its local

submatrix. With this parallelization scheme,

the only required inter-process comm-

unication is the all-gather needed after

HMVM to form the global vector on each

process (using MPI_Allgatherv).

 This parallelization scheme is motivated

by two performance properties of the solver:

1) the BiCG’s computation time is dominated

by HMVM, while the time needed for the

remaining vector operations is insignificant

in the computation time and 2) the redundant

computation of the vector operations avoids

the global all-reduces needed to compute the

six dot-products for each BICG iteration,

which can be much more expensive

compared with the arithmetic operations.

Hence, by redundantly performing the vector

operations, this parallelization scheme aims

to balance out two conflicting performance

factors: distributing the computation with a

minimum inter-process communication.

 We conducted all the experiments in double

precision, and used the matrices from

electrostatic field simulations with perfect

conductors of two particular shapes:

• Sphere: pairs of perfect conductors with
the shape of a sphere. For each pair, one

sphere has its electric potential set to be 1 Volt,

while the other has the electric potential of −1

Volt. We use the boundary value of 0 Volt at

infinity and analyze the induced electrical

charge on the surface of the spheres.

• Human: perfect conductors with the shape
of a humanoid who is standing on a uniform

2D grid on a uniform electric field. The

surface of the humanoid is divided into 2, 359,

680 triangular elements and the induced

electrical charge on the humanoid’s surface

was calculated using an indirect BEM with a

single layer potential formulation and step

functions as the base function for the BEM.

 Table 1 lists our test matrices. The large-

scale matrices 8ms and 20ms were used for

the inner-iteration to precondition the linear

system.

Table 1. Test matrices where “compression%”

is the ratio of the total number of numerical

values in the compressed matrix over

nlog2(n).

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
Final Report for JHPCN Joint Research of FY 2017, May 2018

6

Figure 6. Block sizes in test matrix ``100ts”

 All of the compressed blocks have rank one

and we fixed the number of inner iterations

to be 20 for our experiments. Figure 6 shows

the sizes of the blocks in the matrix 100ts. We

see a wide range of the block sizes where all

the blocks on the diagonal are square and

dense, while off-diagonal blocks can be either

dense or compressed and are either tall-

skinny or wide-short. To utilize the GPU,

each process divides its local dgemv tasks

into several batches (e.g., a batch with a fixed

number of dgemv’s), and then calls

dgemv_vbatched for each batch.

dgemv_vbatched can execute dgemv’s with

variable matrix sizes in a single kernel launch.

However, the performance of dgemv_

vbatched can be much lower than its fixed-

size counterpart. This is especially true when

there is a wide range of matrix sizes in the

single batch. In order to improve the

performance of dgemv_vbatched, we

examined several schemes to sort the blocks

of A, on which dgemv’s operate.

 In Figure 7, the blocks were sorted in the

ascending order of their numbers of rows, and

in Figure 8, we first grouped the blocks

according to the number of rows (the k-th

Figure 7. Matrix 100ts sorted by the number

of rows

Figure 8. Matrix 100ts sorted by number of

rows, and then by number of columns within

group.

group contains the block with the number of

rows in the range between 8(k − 1) + 1 and 8k),

and then we order the blocks in the same

group according to their numbers of columns.

 Figures 9 and 10 show the effects of these

two sorting schemes on the kernel

performance for the matrix 100ts. The figure

also shows the performance of the fixed-size

batched kernel for each block size, which we

consider as the upper bound on the

performance of the variable-size kernel. We

clearly see that the performance can be

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
Final Report for JHPCN Joint Research of FY 2017, May 2018

7

Figure 9. Sorting scheme of Figure 7 with

fixed batch count.

Figure 10. Sorting scheme of Figure 8 with

fixed batch count.

significantly improved by properly sorting

the blocks (speedups of up to 2.5×) and the

variable size kernel may obtain the

performance closer to that of the fixed-size

kernel.

 Figures 11 and 12 show the effects of the

GPU kernels on the BiCG performance on

Tsubame-3 and Reedbush-H, respectively.

For the performance without the GPUs, we

bind each process to a socket and launch one

OpenMP thread on each of the available cores

of the socket. We found this process/thread

configuration typically gives the best

(a) Strong scaling 100ts (b) On 8 nodes

Figure 11. Performance on Tsubame-3. The blue

markers show the solution time with original

HACApK without GPUs, while the bars are with

the GPUs.

(a) Strong scaling 100ts (b) On 8 nodes

Figure 12. Performance on Reedbush-H. The blue

markers show the solution time with original

HACApK without GPUs, while the bars are with

the GPUs.

performance of the hybrid MPI/OpenMP

implementation. With the GPUs, we launch

one process per GPU (i.e., four or two

processes per node on Tsubame-3 or

Reedbush-H). The figures clearly show that

the GPUs have reduced the iteration time

significantly, obtaining the speedups of

about 4.2× and 4.5× on eight nodes of

Tsubame-3 and Reedbush-H, respectively (in

Figures 11(b) and 12(b)).

5.2 H-matrix LU-decomposition on distributed
memory

 We propose a novel method to parallelize

the factorization of a hierarchical low-rank

matrix (H-matrix) on distributed memory

computers. This problem is much more

difficult than the parallelization of a dense

matrix factorization due to the hierarchical

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
Final Report for JHPCN Joint Research of FY 2017, May 2018

8

block structure of the matrix, and it is much

more difficult than the H-matrix vector

multiplication due to the dataflow of the

factorization. Getting rid of the hierarchy, the

Block Low Rank (BLR) format not only

simplifies the parallelization, but also

increases concurrency. However, this comes

at a price of loosing the near linear

complexity of the H-matrix factorization. In

the present work, we propose a “lattice H-

matrix” factorization that combines the

parallel scalability of BLR with the near linear

complexity of H-matrix. To the extent of our

knowledge, there have been no such attempts

to balance the complexity and concurrency of

two structured low-rank approximation

methods.

 We can generate any of the low-rank

structures shown in Figure 13 by controlling

the admissibility condition and the branch

truncation of the block cluster tree during the

construction of the H-matrix. Hence, all

structured low-rank matrices can be

regarded as special types of the H-matrices,

as illustrated in Figure 13 for a given problem.

 Each partitioning structure has different

pros and cons. For instance, the H-matrix is

the most general low-rank matrix structure,

and it is an effective way of compressing the

matrix with small numerical ranks. However,

it usually has a complicated partitioning

structure as shown in Figure 13(a), which

makes it challenging to perform some matrix

operations on a distributed-memory

computer (e.g. LU factorization).

 To improve the parallel scalability of the

matrix operations, simpler partitioning

structures have been proposed. For instance,

by setting a weak admissibility condition, we

can construct the partitioning structure

Figure 13 Illustration of popular low-rank

structures generated for the same problem:

(a) general H-matrix and its conversion to (b)

Hierarchically Off-Diagonal Low-Rank

(HODLR) layout, (c) Block Low-Rank (BLR)

layout, and (d) lattice H-matrix layout. Blocks

painted in deep red show dense submatrices,

and blocks in light red indicate low-rank

submatrices.

shown in Figure 13(b), which can be seen in

the Hierarchical Semi-Separable (HSS)

matrix or in the Hierarchically Off-Diagonal

Low-Rank (HODLR) matrix. Compared with

the H-matrix structure, this structure is

simpler and more convenient for per-

forming certain matrix operations on

distributed-memory. However, this matrix

structure assumes a weak admissibility

condition, where all off-diagonal blocks are

assumed to be low-rank. When the weak

admissibility condition is applied to a 3D or

higher dimensional problem, this structure

leads to a higher asymptotic complexity due

to the larger ranks of off-diagonal blocks.

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
Final Report for JHPCN Joint Research of FY 2017, May 2018

9

 Block Low Rank (BLR), shown in Figure

13(c), is another simpler matrix structure.

Though the construction of the BLR matrix

does not require the block cluster tree used to

construct the H-matrix, it can be constructed

by truncating all branches of the cluster tree

at a certain depth level. The partitioning

structure of BLR is then given by the induced

blocks in the block cluster tree. The

admissible condition is verified on each block

after the structure is defined. The memory

complexity of the BLR matrix is O(n1.5) and is

higher than O(nlogn) of the H-matrix.

However, the BLR matrix is a simple,

nonhierarchical, and effective low-rank

layout, especially for the distributed-memory.

In particular, the BLR structure has the block

layout similar to the 2D block layout used in

many dense matrix operations, and it can use

many of the high-performance optimization

techniques developed for the dense matrix

operations.

 Figure 13(d) shows the partitioning

structures of the lattice H-matrix that we use

in this paper. It combines the structures of

BLR with the H-matrix by introducing the

lattice structure on top of the H-matrix. In

other words, the lattice H-matrix utilizes the

H-matrix format for each block of the BLR

matrix. These lattices are then distributed

among the processes in a 2D block cyclic

fashion. It is designed to balance the

advantages of the H and BLR matrices: the

high compressibility of the H- matrix, which

reduces the memory and computational costs,

and the parallel scalability of the BLR matrix.

Using the lattice H-matrix, the complex

matrix operations originating from the H-

matrix structure are performed using the

threaded computational kernels.

Figure 14 Effects of the leaf sizes on the

factorization time, and the computational

and storage costs of the factorization.

Taken a large enough lattice size, the lattice

H-matrix can reduce the memory complexity

from O(n1.5) of the BLR matrix to O(nlogn) of

the H-matrix. At the same time, the lattice

matrix has the same communication pattern

as the BLR matrix, and it can utilize the high-

performance parallel algorithms and the

efficient communication schemes developed

for the dense matrix operations.

 We conducted our experiments on the on

the Reedbush-L supercomputer at the

University of Tokyo, and the TSUBAME3.0

supercomputer at the Tokyo Institute of

Technology, and also the Edison super-

computer at the National Energy Research

Scientific Computing Center (NERSC). We

used Intel MPI compiler mpiifort and

mpiicpc of version 18.1.163. On all systems,

the code was compiled using the -O3

optimization flag, and linked to sequential

MKL version 2018.1.163.

 We first study the performance of the

threaded BLR LU (BLU) and threaded H-

matrix LU (HLU) factorization on the shared-

memory CPUs. One of the critical parameters

that affect the factorization performance is

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
Final Report for JHPCN Joint Research of FY 2017, May 2018

10

Figure 15 Performance of the shared-

memory factorization. Left graph shows the

breakdown of the flop counts needed for

different phases of factorization (diagonal

factorization, computation of off-diagonal

tiles in the panel, updating either compressed

or dense blocks, and ACA), relative to the

total flop count for BLR. Right tables shows

the factorization time in seconds using

different numbers of threads on one node.

the leaf size. Hence, we first seek for an

optimal leaf size that obtains the shortest

factorization time. Figure 14 shows the effects

of the leaf size on the factorization

performance. A larger leaf size tends to

increase both the computational and storage

costs of the BLU factorization, but it also

improves the performance of the BLAS and

LAPACK subroutines used for the local

computation. In many cases, BLU obtained

the fastest factorization time using the leaf

size that is larger than that obtained the

minimum storage or computation. The

optimal leaf size also tends to increase with

the increase in the matrix dimension. In

contrast, HLU’s factorization time was less

sensitive to the leaf size. Overall, for our test

matrices, the leaf size of 𝑂𝑂(√𝑘𝑘𝑘𝑘) with k = 5
was a good choice for BLU, and that is what

we use for the rest of the experiments.

Figure 16 Computational and storage costs

with varying matrix sizes. The low-rank

compression greatly reduces the costs of the

factorization, e.g., for the matrices in this

figure, the dense factorization would require

the computational costs of 0.7, 667, 2250, 6352,

and 25743 Tflops, and the storage costs of 0.8,

80, 180, 360, and 914 GB.

 For HLU, we use the fixed leaf size of 300.

With these choices of the leaf sizes that obtain

the near-optimal performance of each

algorithm, BLU needed a much larger leaf

size and had much higher storage and

computational costs than HLU, especially for

a large matrix.

 Figure 15(a) shows the relative flop counts

for different phases of the factorization. We

see that the flop count is dominated by the

trailing submatrix update that is well suited

for the parallelization. Figure 15(b) and 15(c)

show the resulting thread scalability of the

two factorization algorithms. Since we used a

fixed leaf size for HLU, its scalability was

lower than BLU’s for a small matrix. For

instance, for the matrix 1ts, there were only

three diagonal blocks for HLU. On the other

hand, for a large matrix, HLU was often

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
Final Report for JHPCN Joint Research of FY 2017, May 2018

11

Figure 17 Effects of MPI/OpenMP

configurations on the factorization time for

the matrix 100ts with 18 threads per process

on Reedbush-L.

faster than BLU due to HLU’s lower

computational cost.

 Figure 16 visualizes the computational and

storage costs of BLU and HLU for varying

matrix dimension. The difference between

the costs of the two algorithms tends to

increase with the increase in the matrix

dimension. The cost of the new lattice LU is

between those of BLU and HLU depending

on the lattice size used.

 We now compare the performance of BLU

and the new LLU (lattice LU) on the

distributed-memory computer. We first

study the effects of the lattice size with the

increasing number of processes (e.g., the

storage or computational cost per process).

For LLU, we used the fixed leaf size used for

HLU (i.e., 300). As we reduce the lattice size,

the H-matrix is split into smaller lattices,

becoming closer to BLR. The factorization

costs did not significantly change using

different leaf sizes.

 Figure 17 shows the performance of LLU

using three different MPI/OpenMP

Figure 18 Strong parallel scaling for 332ts

with 18 threads per process on Reedbush-L.

The imbalance is the ratio of the difference

between the maximum and the minimum

loads among the processes over the average

load.

configurations: i.e., 1) flat-MPI with one

process per core, 2) MPI+OpenMP with one

process per socket and one thread per core

but with a synchronization among the local

threads before each phase of factorization,

and 3) MPI+OpenMP tasks. We see that the

hybrid MPI/OpenMP programming often

reduces the cost of inter-process

communication, performing better than the

flat-MPI. The performance can be further

improved using tasks that avoid the artificial

synchronizations and obtain a better core

utilization.

 To accommodate the large storage costs of

BLU, we conducted the remaining

experiments on Reedbush-L. Figure 16(a)

shows the load imbalance among the

processes for computing BLU and HLU.

Since HLU’s lattice size is larger than BLU’s

tile size, HLU had a greater load imbalance,

especially with a larger process count. One of

our motivations for using OpenMP task is to

reduce the effects of the load imbalance on

the parallel scalability of HLU or BLU.

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
Final Report for JHPCN Joint Research of FY 2017, May 2018

12

6. Progress of FY2017 and Future Prospects

6.1 Progress of FY2017 including self-
evaluation with respect to the research plan

The two main goals of the fiscal year 2017

are 1) Implement the GPU version of

HACApK using block MAGMA, which can

calculate streams of small matrices efficiently

on GPUs, 2) Extend HACApK to perform a

LU decomposition of a hierarchical version of

H-matrices instead of the current non-

hierarchical version. We have achieved our

goals with satisfactory performance, where

the former has been accepted to IPDPS’18

[5,6] and the latter has been submitted to

SC’18.

For item 1), we have made significant

progress as shown in section 5.1. We ported

the hierarchical-matrix BiCG solver onto

GPU clusters [5], and investigated several

techniques to improve the performance of the

batched GPU kernel (sorting the tasks,

dividing them into multiple batches of

different batch sizes [9], and using GPU

streams to execute multiple batches in

parallel) [16]. We hope that these techniques

will be integrated into the future generation

of the batched kernel along with a runtime

analysis and tuning. We have also studied

several techniques to reduce the inter-GPU

communication. As the heterogeneous node

architecture becomes increasingly complex

and the cost of the inter-GPU communication

increases, these techniques likely become

critical to many applications running on

GPUs. We have observed a great potential of

the sophisticated MPI communication

strategies that complement our studies

[12,20], and we plan to investigate its

performance on different architectures (e.g.,

non-blocking collective on Summit). We

would also like to investigate other

algorithmic techniques to address the

communication costs (e.g., 2D partitioning,

empty off-diagonal blocks with rank zero).

Though we ported only the linear solver onto

the GPUs, we plan to port other parts of the

simulation (e.g., generation or compression

of the matrix). We have also extended

HACApK to run on the Xeon Phi Knights

Landing [7,17,25]. This port is more

straightforward than that of the GPU [8,22],

since it is merely changing the BLAS library

to the AVX512 optimized version and

compiling for the Knights Landing. We have

also ported HACApK to run on FPGAs using

OpenCL [18,19].

For item 2), we have proposed a novel

method that hybridizes the BLR and H-

matrix to achieve optimal balance between

the complexity and concurrency on

distributed memory architectures. The

algorithm partitions the matrix into 2D H-

submatrices, called lattices, and distributes

the lattices in a 2D cyclic pattern. Compared

with the standard H-matrix factorization, the

lattice simplifies both the communication

pattern and the parallel computation, while

compared with the block low-rank (BLR)

layout, the lattice reduces both the storage

and computational costs. Our experimental

results demonstrate that the lattice- based LU

(LLU) can obtain significant speedups over

BLR, while using a smaller storage.

We not only developed the H-matrix library

in FY2017 but also applied it to various

scientific problems including electro-

magnetics [1,24], micromagnetics [3,26],

which required the parallelization of BEM

[2,13]. A new and exciting application that we

have extended H-matrices to is machine

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
Final Report for JHPCN Joint Research of FY 2017, May 2018

13

learning where we observed significant

speedup by using low-rank approximations

[10, 11, 14].

6.2 Future prospects

We are working to improve the parallel

performance of LLU (e.g., accumulating

multiple updates before compression, using

task-priority for reducing idling time, and

examining the potential of other runtime

systems). Though the low-rank compression

reduces the communication volume, the

communication can still be the parallel

performance bottleneck. We are looking to

reduce this bottleneck by integrating other

techniques (e.g., 2.5D factorization). The

selection of the optimal lattice size is critical

to obtain good performance of LLU,

especially with an increase in the process

count. We are studying theoretical or

experimental way of picking a proper lattice

size. Another critical parameter is the leaf

size. For our experiment with LLU, we used

the leaf size that obtained a good

performance of HLU. We are examining the

effects of the lattice size on the optimal leaf

size for HLU’s performance. Other future

work including using the factors as a

preconditioner and accelerating the

factorization process using GPUs. Our focus

is on HACApK that generates a particular

matrix partition and compression, and we

cannot directly use existing algebraic linear

solver packages. However, we would like to

extend our study by examining other solvers

for the applications of our interests. In fact,

our layered interface allows any partitioning

structure to be imported into our solver, and

our solver can be used as an algebraic solver.

7. List of Publications and Presentations

(1) Journal Papers

1. N. Tominaga, T. Mifune, A. Ida, Y. Sogabe, T.

Iwashita, N. Amemiya, ``Application of

hierarchical matrices to large-scale

electromagnetic field analyses of coils wound

with coated conductors”, IEEE Transactions

on Applied Superconductivity, Vol. 28, No. 3,

pp.1-5 (2018).

2. T. Iwashita, A. Ida, T. Mifune, Y. Takahashi,
``Software Framework for Parallel BEM
Analyses with H-matrices Using MPI and
OpenMP", Procedia Computer Science
108C, pp.2200–2209 (2017).

3. A. Ida, T. Ataka, T. Mifune, Y. Takahashi, T.

Iwashita, A. Furuya,``Application of

Improved H-matrices in Micromagnetic

Simulations”, IEEE Transactions on

Magnetics, Vol. 54, No. 3, 2018.

4. H. Ibeid, R. Yokota, J. Pestana, D. Keyes, ̀ `Fast

Multipole Preconditioners for Sparse Matrices

Arising from Elliptic Equations”, Computing

and Visualization in Science, pp. 1—17, 2017.

https://doi.org/10.1007/s00791-017-0287-5

(2) Conference Papers

5. I. Yamazaki, A. Abdelfattah, A. Ida, S.

Ohshima, S. Tomov, R. Yokota, J.

Dongarra, ``Analyzing Performance of

BiCGStab with Hierarchical Matrix on GPU

clusters,” 32nd IEEE International Parallel &

Distributed Processing Symposium,

IPDPS2018, Vancouer, Canada, 21-25 May

(2018).

6. A. Ida, ``Lattice H-Matrices on Distributed-

Memory Systems”, 32nd IEEE International

Parallel & Distributed Processing Symposium

(IPDPS 2018), Vancouver, Canada, 21-25 May

(2018).

7. T. Hoshino, Akihiro Ida, T. Hanawa, K.

Nakajima, ``Design of Parallel BEM Analyses

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
Final Report for JHPCN Joint Research of FY 2017, May 2018

14

Framework for SIMD Processors”, The

International Conference on Computational

Science 2018 (ICCS 2018), Wuxi, China, 11-13

Jun. (2018).

8. S. Oshima, I. Yamazaki, A. Ida, R. Yokota, ``

Optimization of Hierarchical Matrix

Computation on GPU”, Proceedings of the 4th

Asian Conference, Lecture Notes in

Computer Science, Vol. 10776, pp. 274-292,

Singapore, 26-29 Mar. (2018).

9. A. Ida, H. Nakashima, M. Kawai, ``Parallel

Hierarchical Matrices with Block Low-rank

Representation on Distributed Memory

Computer Systems” International Conference

on High Performance Computing in Asia-

Pacific Region, Tokyo, Japan, 28-31, Jan.

(2018)

10. K. Oosawa, R. Yokota, ``Evaluating the

Compression Efficiency of the Filters in

Convolutional Neural Networks ”,

Proceedings of the 26th International

Conference on Artificial Neural Networks,

Sardinia, Italy, 11-14 Sep. (2017).

11. K. Oosawa, A. Sekiya, H. Naganuma, R.

Yokota, “Accelerating Matrix Multiplication

in Deep Learning by Using Low-Rank

Approximation”, Proceedings of the 2017

International Conference on High

Performance Computing & Simulation,

Genoa, Italy, 17-21 Jul. (2017).

12. M. AbdulJabbar, G. Markomanolis, H. Ibeid,

R. Yokota, D. Keyes, ``Communication

Reducing Algorithms for Distributed

Heirarchical N-Body Methods”, ISC High

Performance, Lecture Notes in Computer

Science, Vol. 10266, pp. 79–96, Frankfurt,

Germany, 18-22, Jun. (2017).

13. T. Iwashita, A. Ida, T. Mifune, Y. Takahashi,

``Software Framework for Parallel BEM

Analyses with H-matrices Using MPI and

OpenMP”, Tools for Program Development

and Analysis in Computational Science,

ICCS2017, Zürich, Switzerland, 12-14 Jun.

(2017).

14. K. Oosawa , A. Sekiya , H. Naganuma , R.

Yokota, ``Accelerating Convolutional Neural

Networks Using Low-Rank Approximation”,

Proceedings of the 22nd Conference of Japan

Computational Engineering Society, 31 May –

2 Jun. (2017).

(3) Oral Presentations

15. A. Ida, ``Low Rank Approximation Methods

Used in Hierarchical Matrices”, ATAT in HPC

2018, National Cheng Kung University,

Tainan, Taiwan, 27 Mar. (2018)

16. A. Ida, ̀ `Efficient Low-rank Solver for Integral

Equations on Distributed Memory Systems”

SIAM Conference on Parallel Processing for

Scientific Computing, Tokyo, Japan 7-10 Mar.

(2018).

17. T. Hoshino, A. Ida, T. Hanawa, ``Performance

Evaluations and Optimizations of H-Matrices

for Many-Core Processors”, SIAM Conference

on Parallel Processing for Scientific

Computing, Tokyo, Japan 7-10 Mar. (2018).
18. T. Hanawa, A. Ida, T. Hoshino, ``Hierarchical

Matrix Operations on FPGA Using OpenCL”,

The 163rd HPC Workshop, Ehime, Japan, 2 Mar.

(2018).

19. T. Hanawa, A. Ida, T. Hoshino, ``Implementation

of Hierarchical Matrix Operations on FPGAs”,

The 16th HPC Research Presentation, Hakodate,

Japan, 20 Sep. (2017).

20. M. AbdulJabbar, M. Al Farhan, R. Yokota, D.

Keyes, ``Performance Evaluation of

Computation and Communication Kernels of

the Fast Multipole Method on Intel Manycore

Architecture”, 23rd EUROPAR, Galicia, Spain,

29 Aug. - 1 Sept. (2017).
21. T. Katagiri, M. Yang, W. Wang, A. Ida,

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
Final Report for JHPCN Joint Research of FY 2017, May 2018

15

``Performance Evaluation of Integration of

Multiple Randomized Low-Rank Singular

Value Decompositions”, Summer United

Workshops on Parallel, Distributed and

Cooperative Processing, Akita, Japan, 26-28

Jul. (2017).

22. S. Ohshima , I. Yamazaki , A. Ida , R.

Yokota, ``Optimization of Hierarchical Matrix

Computations on a Cluster of GPUs”,

Summer United Workshops on Parallel,

Distributed and Cooperative Processing,

Akita, Japan, 26-28 Jul. (2017).

23. R. Yokota, ``Hierarchical Low-Rank

Approximations at Extreme Scale”, 32nd

International Conference, ISC High

Performance, Frankfurt, Gemany, 18-22 Jun.

(2017).

(4) Others

24. N. Tominaga, T. Mifune, A. Ida, Y. Sogabe, T.

Iwashita, N. Amemiya, ``Application of

hierarchical matrices to large-scale

electromagnetic field analyses of coils wound

with coated conductors”, 25th International

Conference on Magnet Technology (MT25),

Amsterdam, Netherlands, 31 Aug. (2017).

25. T. Hoshino, S. Ohoshima, T. Hanawa, K.

Nakajima, A. Ida, ``Pascal vs KNL :

Performance Evaluation with ICCG Solver”,

ISC17 Poster, Frankfurt, Germany (2017).

26. A. Ida, T. Ataka, T. Mifune, Y. Takahashi, T.

Iwashita, A. Furuya, ``Application of

Improved H-matrices in Micromagnetic

Simulations”, 21st International Conference

on the Computation of Electromagnetic Fields

(Compumag 2017), Daejeon, Korea(20th June

2017).

