
Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
Final Report for JHPCN Joint Research of FY 2017, May 2018

1

jh170049-ISJ
Theory and Practice of Vector Processing

for Data and Memory Centric Applications

Hiroaki Kobayashi（Graduate School of Information Sciences, Tohoku University）

Abstract
Since vector data processing is one of the key technologies for the next-generation
supercomputing system, it is strongly required to clarify the capability of vector data
processing. This project conducts the research on vector data processing potential
that can be used both for development of new HPC systems and for the development
of algorithms for extremely large-scale numerical problems. To this end, the
research group of Lomonosov Moscow State University (MSU) that has experience
with graph problems and the research group of Tohoku University that has
experience with program development for vector supercomputers work together to
clarify the potential of vector data processing on graph problems. The MSU group
has developed various graph algorithms for an ultra-high scale that contains more
than 109 vertices and edges. The research group of Tohoku University has knowhow
to exploit the potential of vector supercomputers. By the international collaboration
of the two groups, the theory and practice of vector data processing for ultra-high
scale graph problems aims to be clarified. In this report, by the performance analysis
of four graph problems on SX-ACE, the potential of the vector data processing to the
graph problems is shown.

1. Basic Information

(1) Collaborating JHPCN Centers

Cyberscience Center, Tohoku University

(2) Research Areas

o Very large-scale numerical computation

o Very large-scale data processing

o Very large capacity network technology

■ Very large-scale information systems

(3) Roles of Project Members

This collaborative work is undertaken by

Lomonosov Moscow State University (MSU)

and Tohoku University. The researchers of

MSU mainly focus on algorithm study and

development of graph problems that can

effectively utilize vector data processing. The

researchers of Tohoku University conduct

performance analysis and optimizations for

obtaining aspects for development of next

generation vector computer architectures.

Lomonosov Moscow State University (Russia)

o Vladimir Voevodin (Algorithm Development)

o Dmitry Nikitenko (Performance analysis and

statistics)

o Alexander Antonov (Informational structure

analysis)

o Alexey Teplov (Scalability and performance

analysis)

o Ilya Afanasyev (Code design and code

optimization)

Tohoku University (Japan)

o Hiroaki Kobayashi (Code optimization and

performance analysis)

o Hiroyuki Takizawa (Code optimization and

performance analysis)

o Akihiro Musa (Code design and code

optimization)

o Ryusuke Egawa (Code optimization and

performance analysis)

o Kazuhiko Komatsu (Code design and code

optimization)

2. Purpose and Significance of the Research

 The overall goal of this project is the

deep research on vector processing potential

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
Final Report for JHPCN Joint Research of FY 2017, May 2018

2

on large-scale numerical methods. The

obtained knowledge of this project can be

useful not only for developments of new

vector supercomputing systems, but also for

developments of extremely large-scale

numerical solutions.

 To this end, this project focuses on a

graph problem that is one of the important

extremely large-scale numerical solutions. A

graph problem is well known as the basis

for solution of the wide range of applied and

scientific challenges such as

communicational and transport network

optimization, social network analysis, and

web data analysis. To satisfy the demands of

these challenges, a graph problem with

more than 109 vertices and edges should be

solved. The Russian research group tries to

solve such huge-scale graph problems by

effectively utilizing the vector data

processing on vector supercomputing

systems in this project. The Russian research

group considers the efficient algorithm that

is suitable for the vector data processing and

implements the algorithm on vector

supercomputing systems.

 Furthermore, by collaborating with the

Tohoku university research group that has a

long experience with operation and

development of vector supercomputing

systems, the vector-friendly graph algorithm

is further optimized and tuned so as to fully

exploit the potential of vector

supercomputing systems.

 Through this collaborative work of both

groups about theory and practice, these

research efforts become public to share

valuable results and knowledge. For

example, as a part of the AlgoWiki project

that is mainly developed and maintained in

the Russian group, the valuable

experimental data is open to be made

commonly and widely available. These

results are also positively utilized for

development of other scientific applications

as well as better understanding the

requirements for the next generation vector

processor and memory architecture.

 The effective use of vector data

processing becomes more essential for the

future design of applications as vector data

processing is widely used in x86 processors,

IBM Power processors as well as vector

processors. Therefore, the deep study on

vector data processing is important for both

supercomputer design and large-scale

applications.

3. Significance as a JHPCN Joint Research

Project

From the scientific aspects, this project can

show the effectiveness of vector data

processing in large-scale graph algorithms.

The development in the vector-friendly

graph algorithm is important. Thus, the

JHPCN Joint Research Project is an

excellent opportunity to conduct our joint

interdisciplinary research between the

Russian and Japan teams.

 From the computational aspects,

Russia has different supercomputing

systems from Japan. Regarding vector

supercomputing systems, currently, there

are no vector systems in Russia. Thus, the

JHPCN project helps to investigate and

develop a graph algorithm that is suitable

for vector data processing on vector

supercomputing systems.

4. Outline of the Research Achievements up

to FY2016

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
Final Report for JHPCN Joint Research of FY 2017, May 2018

3

As this year is the first year, there are no

research achievements up to FY2016.

5. Details of FY2017 Research Achievements

In the period of FY2017, we have conducted

performance evaluation of four graph

problems using an Intel Xeon Gold

processor, an Intel Xeon Phi Knights

Landing processor. Then, we have been

working on deep performance and

bottleneck analysis of graph algorithms on a

vector processor, especially NEC SX-ACE.

5.1 Performance evaluation of Single Source

Shortest Path (SSSP) problem

5.1.1 Problem description of SSSP

An undirected graph 𝐺 = 𝑉,𝐸 with

vertices 𝑉 = (𝑣!, 𝑣!,… , 𝑣!) and edges

𝐸 = (𝑒!, 𝑒!,… , 𝑒!) is given. Each edge 𝑒 ∈ 𝐸

has a weight value 𝑤 𝑒 . The path between

vertices 𝑢 and 𝑣 is defined as edges

sequence 𝜋!,! = (𝑒!,… , 𝑒!) , beginning in

vertex 𝑢 and ending in vertex 𝑣, so each

edge follows another one. The path length

can be defined as 𝑤 𝜋!,! = 𝑤 𝑒!!
!!! . A

path 𝜋!,!∗ , which has a minimal possible

length between vertices 𝑢 and 𝑣, is called

the shortest path: 𝑑 𝑢, 𝑣 = 𝑤 𝜋!,!∗ =

min𝑤 𝜋!,! .

 Depending on the choice of a vertex pair

between which the search is performed, the

shortest paths problem can be formulated in

three different ways:

• SSSP (single source shortest paths)

computes the shortest paths from a

single selected source vertex.

• APSP (all pairs shortest paths)

computes the shortest paths between

all pairs of graph vertices.

• SPSP (some pairs shortest paths)

computes the shortest paths between

some pre-selected pairs of vertices.

 In this project, the SSSP problem is

examined, since it is the simplest and most

basic for other problems: for example, the

APSP problem for large-scale graphs can be

solved by repeated calls of the SSSP

operations for each source vertex, since

traditional algorithms, such as

Floyd-Warshal, cannot be applied because of

the high memory costs.

5.1.2 Algorithm description

The SSSP problem can be solved with three

traditional algorithms: Dijkstra,

Bellman-Ford, and Delta-stepping.

• Dijkstra's algorithm is designed to

solve the problem in graphs with edges,

having only non-negative weights.

Variation of the algorithm,

implemented with Fibonacci heap has

the asymptotically fastest time

𝑂 |E| + |V|log|V| . The computations of

this algorithm include sequential

traversal of vertices, starting from the

source vertex, while putting adjacent

vertices to the stack (heap) to be

processed later. As a result, the

algorithm can be executed only

sequentially.

• The Bellman-Ford algorithm is

designed to solve the problem in

graphs, including edges with negative

weights. The computational kernel of

the algorithm consists of a few

iterations, which require traverses of all

graph edges; the array of distances is

computed from the data of each edge.

The computations continue until there

are no changes in the distance array.

The algorithm has sequential

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
Final Report for JHPCN Joint Research of FY 2017, May 2018

4

complexity equal to 𝑂 𝑝|E| , where 𝑝

is the maximum possible length of the

shortest path from the source vertex to

any other. As a consequence, the

worst-case complexity is equal to

𝑂 |V||E| , however, for many

real-world graphs, the algorithm is

finished in a much smaller number of

steps. Moreover, the algorithm has a

significant parallel potential: its parallel

complexity is equal to 𝑂 𝑝 |!|
!

, where

N is the number of processors used.

• The delta-stepping algorithm is

designed to solve the single source

shortest paths problem using novel

data-structures called buckets. It can be

viewed as a generalization of the

Bellman-Ford algorithm, aiming to

improve its complexity in a average

sense. For random directed graphs with

!
|!|

 and uniformly distributed edge

weights, the algorithm completes

computations in 𝑂 (!"#|!|)^!
(!"# !"#|!|)

.

5.1.3 Implementation details of SSSP

First of all, it is very important to select the

most suitable algorithm for the target NEC

SX architecture. Since Dijkstra’s algorithm is

naturally sequential and requires complex

data structures as well as the Delta-stepping

algorithm, those algorithms are not

implemented on NEC SX architecture. On

the other hand, the Bellman-Ford algorithm

does not require complex data structure

processing. Moreover, each iteration of this

algorithm is a parallel traversal of all graph

edges, where parallel processing and

vectorization can be applied.

 During the selection of the most suitable

algorithm for particular parallel architecture,

parallel algorithm properties have to be

studied. For this purpose, informational

graphs, introduced in [1], can be used.

Figure 5.1 demonstrates informational

graphs of the Bellman-Ford algorithm.

Figure 5.1 Informational graph of
Bellman-Ford algorithm

Figure 5.2 Graph edges reordering example
for graph with 5 vertices and 16 edges

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
Final Report for JHPCN Joint Research of FY 2017, May 2018

5

 Parallel operations as shown in named 3

in Figure 5.1 correspond to independent

updates of graph edges on each iteration,

while operations in named 2 correspond to

parallel initialization of distances array. Both

those operations can be successfully

parallelized and vectorized.

 Before implementing the chosen

algorithm, it is important to determine the

storage data format for input graphs. For the

Bellman-Ford algorithm, the most suitable

format is an edges list, where each edge is

stored as a triple {vertex-start, vertex-end,

edge’s weight}; all edges are stored in a

single array in any order. Moreover, this

format allows simpler vectorization and

possible sorting-optimization, which aims to

improve data locality. Thus, this format is

going to be used for all implementations in

this research project.

 To achieve data locality improvement on

per-edge updates (indirected memory

accesses, parallel operations on

informational graph), the main optimization

used is graph edges reordering. This

optimization significantly improves memory

access pattern, which allows the algorithm

to achieve much higher performance, since

the data with indirect memory accesses are

placed more locally and stored in caches for

the longer period of time. The reordering is

implemented in the following way: an array

of distances is divided into segments (red,

green and blue colors on Figure 5.2), whose

sizes are equal to the size of the lowest level

cache on the target architecture. Then, the

edges are placed into the array in the

following way: from the beginning of the

array, an edge, whose source vertices belong

to the first segment of distances array, is

sorted. Then, the second and the third edges

are sorted in order. Edges with the same

segment number are sorted with the similar

strategy, applied to their destination

vertices.

 Vectorization itself is achieved with help

of #pragma cdir nodep directive and sxc++

compiler.

5.1.4 Evaluation of the Bellman-Ford

algorithm on NEC SX, Intel KNL, and

Skylake systems

Table 5.1. System configurations.

Model
name

Intel Xeon
Gold 6126

Intel Xeon
Phi 7230

NEC
SX-ACE

Socket 1 1 1

Cores per
socket 12 64 4

CPU MHz 2601 1297 1000

L1d cache 32K 32K 1M

L2 cache 1024K 1024K -

L3 cache: 19712K - -

Figure 5.3 Performance (in MTEPS) of multi
core implementations of the Bellman-Ford
algorithm.

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
Final Report for JHPCN Joint Research of FY 2017, May 2018

6

This section describes the comparisons of

performances of the Bellman-Ford algorithm

among three different architectures: NEC

SX-ACE, Intel Knight Landing (KNL), and

Intel Skylake.

 All results presented in this report have

been obtained on two supercomputers: NEC

SX-ACE in Tohoku University, and

Lomonosov-2 in Lomonosov Moscow State

University. Lomonosov-2 has several

partitions with different configurations,

including nodes with Intel Xeon Gold 6126

and Intel Xeon Phi 7230. The specifications

of those systems are presented in Table 5.1.

In general, the KNL has the highest number

of lightweight cores among the reviewed

architectures, in the meantime with the

smallest amount of cache memory.

Moreover, in current configuration on

Lomonosov-2, KNL has high-bandwidth

MCDRAM memory, which can be used as a

large last-level cache on a variety of

problems.

 In order to compare different graph

algorithms implementations between

different architectures, a performance metric

is widely used. When the algorithm

processes a fixed graph with a total amount

of |E| edges in T seconds, the performance

can be calculated in this way.

𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒(𝑖𝑛𝑇𝐸𝑃𝑆) =
|𝐸|
𝑇

=
𝑒𝑑𝑔𝑒𝑠𝑐𝑜𝑢𝑛𝑡
𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑡𝑖𝑚𝑒

 Thus, the performance metric indicates

the amount of Traversed Edges Per Second

(TEPS) of a fixed graph during algorithm

execution time. This metric can be calculated

for both single-core and multicore

implementations; Figure 5.3 demonstrates

performance comparison between multicore

implementations for three different

architectures.

 Since all three architectures have

different numbers of cores, it is interesting to

compare performance values obtained on a

single core of each target processor. For

these purposes we use 2 metrics: performance

per core, which is a performance in TEPS

metric, obtained on a single core of each

Figure 5.4 Performance (in MTEPS) of single core implementations of the Bellman-Ford algorithm.

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
Final Report for JHPCN Joint Research of FY 2017, May 2018

7

target processor, and performance per core

normalized, which is usual performance in

TEPS obtained on maximum number of

cores on a target processor, divided by the

number of cores used during computations

(4 for NEC SX, 12 for Skylake, 64 for Intel

KNL). In general, a performance per core

metric represents how well an algorithm

utilizes single core computational

capabilities of the target system, while a

performance per core normalized metric takes

into an account how well all the cores work

together on a multicore system.

 Figure 5.4 demonstrates performance

per core comparison between

implementations for three different

reviewed architectures. These figures clearly

show that the performance of NEC SX is

comparable to or higher than those of

Skylake and KNL in the case of the single

core performance. This is because the

algorithm implemented is suitable for the

vector architecture. Thus, the average vector

length and vector operation ratio, which are

important metrics for the vector architecture,

are very high of 99.62% and 255.9,

respectively. Therefore, NEC SX could

achieve such performance.

 In order to further evaluate parallel

efficiency of the developed implementations,

we use another 2 widely used metrics:

parallel efficiency and parallel acceleration,

which can be calculated using the following

formulas:

𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 =
𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝑡𝑖𝑚𝑒
𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑡𝑖𝑚𝑒

=
𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒
𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒

𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =

𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝑡𝑖𝑚𝑒
𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑡𝑖𝑚𝑒
𝑐𝑜𝑟𝑒𝑠 𝑛𝑢𝑚𝑏𝑒𝑟

∗ 100

=

𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒
𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒

𝑐𝑜𝑟𝑒𝑠 𝑛𝑢𝑚𝑏𝑒𝑟

 Figure 5.5 demonstrates the parallel

Figure 5.5 Performance (in MTEPS) of single core implementations of the Bellman-Ford algorithm.

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
Final Report for JHPCN Joint Research of FY 2017, May 2018

8

acceleration and parallel efficiency derived

by these equations. The parallel efficiencies

of NEC SX is higher than or comparable to

those of Skylake. More investigation is

required when the graph scale is more than

24 in the case of NEC SX.

5.2 Performance evaluation of BFS problem

5.2.1 Problem description of BFS

An undirected graph 𝐺 = 𝑉,𝐸 with

vertices 𝑉 = (𝑣!, 𝑣!,… , 𝑣!) and edges

𝐸 = (𝑒!, 𝑒!,… , 𝑒!) is given. The path

between vertices 𝑢 and 𝑣 is defined as a

set arcs𝜋!,! = (𝑒!,… , 𝑒!), beginning in vertex

𝑢 and ending in vertex 𝑣 , so each edge

follows another one. A length 𝑑 𝑢, 𝑣 of

path 𝜋!,! between 𝑢 and 𝑣 vertices is the

number of its arcs (edges). The breadth-first

search finds the shortest 𝑑 𝑢, 𝑣 from a

specified vertex 𝑢 to all the other nodes. (1)

 There are several possible modifications

of the BFS problem:

• it is required only to check which

vertices are reachable from specified

source vertex; (2)

• it is required to find out «parent»

vertex for each one. (3)

 In this report, we have investigated and

implemented the basic version (1) of the

problems, such as SCC and transitive

closure. The BFS employs the version (2).

5.2.2 Algorithms for BFS

BFS is a fundamental problem of graph

processing, so there are a lot of algorithms

that have been designed so far.

• Frontier-based BFS is a classical

algorithm for solving the BFS

problem on processors. The

algorithm is based around storing

vertices, reached on the current step

in a separate data-structure called

frontier. Also, there have been many

implementations for multi-core

CPUs and GPU.

• Direction-optimizing BFS is a novel

approach to BFS, widely used

nowadays. This approach uses two

different bottom-up and top-down

stages; the top-down stage is usually

corresponding to the basic

frontier-based approach, while the

bottom-up stage is a reverse

direction search. Combining these

two approaches allows one to check

significantly fewer edges, which

results in significant accelerations

obtained [2][3].

Figure 5.6 Performance (in MTEPS) of multi
core implementations of the
Bellman-Ford-based BFS algorithm for NEC
SX, Intel KNL, and Skylake architectures.

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
Final Report for JHPCN Joint Research of FY 2017, May 2018

9

• SpMV-based BFS is based on

sparse-matrix dense-vector (SpMV)

multiplications, to which the BFS

problem can be reduced. A

implementation of this method for

vector architectures (Intel KNL) is

described in [4], where authors claim

that even though this approach has

great computational complexity, it is

still more suitable for modern vector

architectures. It is shown that this

approach demonstrates comparable

results to the state-of-art

implementations.

• Bellman-ford based BFS has

approximately the same

computational complexity as the

SpMV-based BFS, but has different

data-structures used. The idea of this

approach is very similar to the

Figure 5.7 Performance (in MTEPS) of single core implementations of the Bellman-Ford-based BFS
algorithm for NEC SX, Intel KNL, and Skylake architectures.

Figure 5.8 Parallel acceleration and parallel efficiency comparison for NEC SX, Intel KNL, and
Skylake architectures.

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
Final Report for JHPCN Joint Research of FY 2017, May 2018

10

Bellman-Ford shortest paths

algorithm, where weight-distances

updates are replaced with

reachability or integer distances

arrays.

5.2.3 Implementation details of BFS

In this report, the Bellman-Ford based BFS is

implemented. It has very similar potential

for vectorization and concurrency. The

#pragma cdir vprefetch directive, the

#pragma cdir vovertake directive, the

#pragma cdir vob directive, and manual loop

unrolling are used to effectively issue the

vector gather/scatter instructions by

overtaking other vector instructions.

5.2.4 Evaluation of the Bellman-Ford based

BFS on NEC SX, Intel KNL, and Skylake

systems

Similar to the evaluation of SSSP, Figure 5.6

demonstrates the performance comparison

between multicore implementations for

three different architectures. Figure 5.7

demonstrates performance per core

comparison. Figure 5.8 demonstrates the

parallel acceleration and parallel efficiency.

From these figures, the parallel efficiencies

of NEC SX are higher than those of the

others, and the high efficiency can be

obtained even when the graph scale is small.

A high vector operation ratio of 99.62% and

a high average vector length of 255.9

contribute to the high efficiency in the case

of the single core performance.

5.3 Performance evaluation of the SCC problem

5.3.1 Problem description of SCC

A directed graph 𝐺 = 𝑉,𝐸 with vertices

𝑉 = (𝑣!, 𝑣!,… , 𝑣!) and edges

𝐸 = (𝑒!, 𝑒!,… , 𝑒!) is given. Edges may not

have any data assigned (so graphs without

edges weights are discussed in current

section). A strongly connected component

(SCC) of a directed graph G is a strongly

connected subgraph, which is maximal

within the following property: no additional

edges or vertices from G can be included in

the subgraph without breaking its property

of being strongly connected.

Figure 5.9 Informational graph of Forward-Backward-Trim algorithm: top-level (left), trim-step
(right).

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
Final Report for JHPCN Joint Research of FY 2017, May 2018

11

5.3.2 Algorithm description of SCC

SCCs in the BFS can be found with one of

the following algorithms.

• Tarjan's algorithm is based on a

single depth first search (DFS) and

uses 𝑂(|E|) operations. Due to the

fact that the algorithm is based on

the DFS, only a sequential

implementation is possible.

• The DCSC algorithm (Divide and

Conquer Strong Components), or FB

(Forward-backward) is based on the

BFS and requires 𝑂(|E| ∗ log(|E|))

operations. This algorithm is initially

designed for parallel

implementations: in each step, it

finds a single strongly connected

component and allocates the

component up to three subgraph,

each of which may contain other

strongly connected components, and,

as a result, this algorithm can be

processed in parallel.

• Variations of the DCSC algorithm

are proposed such as Coloring and

FB with step-trim. These modified

versions of the DCSC algorithm are

described in detail in papers [5][6].

 For obvious reasons, Tarjan's algorithm

is not suitable for solving a problem on

parallel architectures, since it is based on the

depth first search as well as complex data

structures (stack and queue) processing,

which cannot be implemented efficiently on

GPUs.

 A large number of papers such as [7]

have already investigated different variation

of the DCSC algorithms. Different variations

can be more or less effective for different

types of graphs; the paper [7] concluded that

the forward-backward-trim algorithm is the

most efficient way to process graphs.

5.3.3 Implementation details of SCC

During the selection of the most suitable

algorithm for particular parallel

architectures, parallel algorithm properties

have to be studied. For this purpose,

informational graphs, introduced in [1], can

be used.

 Figure 5.9 demonstrates informational

graph of the Forward-Backward-Trim

algorithm. As one can see from the

informational graph, the

Forward-Backward-Trim algorithm is

designed in the following way: on the first

step (trim step), the removal of the strongly

connected components of size 1 is

performed. After that, in each step, the

algorithm finds one nontrivial strongly

connected component (FB-step) and

allocates the component up to three

subgraphs, each of which contains other

components, and, more importantly, this

algorithm can be processed in parallel. This

step heavily relies on breadth-first search to

find all vertices, which can be reached from

the selected pivot vertex, and all vertices,

from which pivot vertex can be reached.

Thus, this algorithm has two levels of

parallelism: BFS level and parallel subgraphs

handling level, which are a big advantage for

parallel target architectures.

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
Final Report for JHPCN Joint Research of FY 2017, May 2018

12

 It is important to describe that both the

Trim and FB steps can be successfully

vectorized, since they both have a lot of

independent operations on bottom level as

shown in boxes 3, 4, 5, 7, 8, and inside BFS in

Figure 5.9.

 As a result, the parallel

Forward-backward-Trim algorithm is

implemented in the following way. First, in

order to avoid building a reverse

(transposed) graph, which is necessary for

efficient backward search implementation, a

graph is converted to the storage format of

an edge list. To further increase the

performance, the input edges list can be

pre-sorted as described in Section 5.1.3. The

approach greatly improves data locality and

cache usage. Moreover, this optimization

also significantly improves the trim step

efficiency, since it has the similar memory

access pattern.

 By the first analysis of the performance

of SCC on NEC SX, as the tendency of the

behavior is similar to the BFS, the similar

optimizations are applied to the

Bellman-Ford based BFS such as the

insertions of directives and manual

unrolling in order to enhance the overtake of

vector gather/scatter instructions.

Figure 5.10 Performance (in MTEPS) of multi
core implementations of Forward-Backward
algorithm for NEC SX, Intel KNL and Skylake
architectures.

Figure 5.11 Performance (in MTEPS) of single core implementations of the Forward-Backward
algorithm for NEC SX, Intel KNL, and Skylake architectures.

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
Final Report for JHPCN Joint Research of FY 2017, May 2018

13

5.3.4 Evaluation of the Forward-Backward

algorithm on NEC, KNL, and Skylake

systems

Figure 5.10 demonstrates the performance

comparison between multicore

implementations for three different

architectures. Figure 5.11 demonstrates

performance per core comparison. Figure

5.12 demonstrates the parallel acceleration

and parallel efficiency. These figures show

that the performance of NEC SX is good

when the graph scale is small such as 18, 19,

and 20. However, as the graph scale increase,

the performance and efficiency decrease. In

the case of KNL, the performance and

efficiency are stable and in the case of

Skylake, the performance and efficiency

increase. More analysis and optimizations

are necessary for NEC SX for the

Forward-Backward algorithm, especially in

the case of the larger graph scale.

5.4 Performance evaluation of Transitive

Closure problem

5.4.1 Problem description of Transitive

Closure

A directed graph 𝐺 = 𝑉,𝐸 with vertices

𝑉 = (𝑣!, 𝑣!,… , 𝑣!) and edges

𝐸 = (𝑒!, 𝑒!,… , 𝑒!) is given. The path

between vertices 𝑢 and 𝑣 is defined as

edges sequence 𝜋!,! = (𝑒!,… , 𝑒!), beginning

in vertex 𝑢 and ending in vertex 𝑣, so each

edge follows another one. Vertex 𝑣 is

reachable from vertex 𝑢, if at least a single

path 𝑃 𝑢, 𝑣 between vertices u and v exists

(every vertex is considered reachable from

itself).

Figure 5.12 Parallel acceleration and parallel efficiency comparison for NEC SX, Intel KNL, and
Skylake architectures.

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
Final Report for JHPCN Joint Research of FY 2017, May 2018

14

 Computing the transitive closure of

graph 𝐺 = 𝑉,𝐸 means obtaining graph

𝐺! = 𝑉,𝐸! , where an edge 𝐸 𝑣,𝑤 from

𝐺 belongs to 𝐸! if and only if vertex 𝑤 is

reachable form vertex 𝑣 in graph 𝐺. As a

result, the transitive closure problem

solution requires the |V|! storage space.

Thus, the memory capacity of a node of

modern computers is not enough even for

medium-sized graphs (starting with around

2!" vertices). For this reason, the

generalization of the transitive closure

problem is used: only the specified pairs of

vertices (𝑢!, 𝑣!) , (𝑢!, 𝑣!) , …, (𝑢!, 𝑣!) are

checked to belong to the transitive closure.

The number of the pairs required to check 𝑛

becomes an additional flexible algorithm

parameter: varying it may greatly affect the

overall algorithm performance.

5.4.2 Algorithm of Transitive Closure

The transitive closure computation problem

in directed graph G can be solved using

three different traditional approaches,

described below.

1. The transitive closure computation can be

reduced to the shortest paths computation

in a corresponding graph with identical

weights. Consequently, it can be solved

with the Floyd-Warshall algorithm,

introduced in [3] and [4]. This algorithm

has the O(|V|3) computational

complexity, and historically is the first

developed algorithm for the transitive

closure problem solution [5]. An

important property of the Floyd-Warshall

algorithm is O(|V|2) memory

requirement for computations, which

immediately reduces its applicability only

to small-scale graphs.

Figure 5.13 Informational graph of Purdom's algorithm.

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
Final Report for JHPCN Joint Research of FY 2017, May 2018

15

2. The transitive closure can be obtained

using several multiple BFS, executed from

each vertex of the graph. The BFS

algorithm has been first described in [6];

the algorithm allows checking

reachability between the selected source

vertex and other vertices of the graph

with only O(|E|+|V|) operations

required (using a queue-based

implementation approach). As a result,

the full transitive closure computation

requires O(|V| ∗ (|V| + |E|)) operations

3. Among the reviewed approaches, the

most optimal computational complexity

has Purdom’s algorithm, introduced in [7].

Purdom’s algorithm is based on the

following idea: the transitive closure

computation for graph G can be reduced

to the transitive closure computation for

graph G−, obtained from graph G by

collapsing G’s strongly connected

components into G− vertices. The

described approach provides O(|E|+

u|V|) computational complexity, where

u is the number of edges in graph G−. The

provided estimate is based on the

assumption that asymptotically optimal

Tartan’s algorithm (O(|E|)) is used for

strongly connected components

computation; if another algorithm, such

as the DCSC is used, computational

complexity can be different.

5.4.3 Implementation details of Transitive

Closure

Based on computational complexity

estimates, the most suitable approach to

solve the transitive closure problem is

Purdom’s algorithm. However, during the

selection of the most suitable algorithm for

particular parallel architectures, the

properties of the parallel algorithm have to

be studied. Figure 5.13 demonstrates an

informational graph of Purdom’s algorithm.

The presented graph is rather complicated

and therefore includes two subgraphs, each

one corresponding to an important

algorithm building-block: the BFS and SCC

computations.

 Thus, the developed algorithm can be

divided into 4 separate stages (steps):

1. Detecting strongly connected

components in input graph G,

2. Creating intermediate representation

Table 5.2 The comparison of sizes between original input graphs and corresponding intermediate

representation graphs.

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
Final Report for JHPCN Joint Research of FY 2017, May 2018

16

graph G−,

3. Computing an answer for all vertex

pairs, related to the same strongly

connected component,

4. Computing an answer for the rest

pairs, using parallel BFS in the

intermediate representation graph

G−.

 If required, an intermediate

representation graph can be saved to hard

drive after stage 1. Then, the transitive

closure can be found more efficiently due to

no repeated SCC computation.

 The edges sorting is not required for

intermediate representation graph G−, since

usually these graphs have a significantly

smaller number of vertices compared to the

original input graphs (while it is still used for

the original graph G in order to improve the

SCC step performance). As a result,

corresponding reachability arrays of

intermediate representation graphs usually

fit into caches. Table 5.2 demonstrates

comparison between sizes of original input

Figure 5.14 Performance (in MTEPS) of multi core implementations of the Purdom’s algorithm
for NEC SX, Intel KNL, and Skylake architectures.

Figure 5.15 Performance (in MTEPS) of single core implementations of the Purdom’s algorithm for
NEC SX, Intel KNL, and Skylake architectures.

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
Final Report for JHPCN Joint Research of FY 2017, May 2018

17

graphs and graphs of corresponding

intermediate representations.

 In the loops, the container functions are

utilized and these functions prevent

vectorization. By avoiding using the

functions, the compiler could vectorize the

code.

5.4.4 Evaluation of Puron’s algorithm on NEC,

KNL, and Skylake systems

Figure 5.14 demonstrates the performance

comparison between multicore

implementations for three different

architectures. Figure 5.15 demonstrates

performance per core comparison. Figure

5.16 demonstrates the parallel acceleration

and parallel efficiency. These figures show

that the performances of NEC SX and KNL

are not high compared to Skylake. In this

algorithm, the deep analysis and further

optimization are mandatory to exploit the

potential of NEC SX-ACE.

References

[1] Voevodin, V.V. Parallel Computing. 608p.

BHV, St. Petersburg (2002). (in Russian)

[2] Beamer, Scott, Krste Asanovi�, and

David Patterson. "Direction-optimizing

breadth-first search." Scientific Programming

21.3-4 (2013).

[3] Zhong, Jianlong, and Bingsheng He.

"Medusa: Simplified graph processing on

GPUs." IEEE Transactions on Parallel and

Distributed Systems 25.6 (2014).

[4] Besta, Maciej, et al. "SlimSell: A

Vectorizable Graph Representation for

Breadth-First Search." Parallel and Distributed

Processing Symposium (IPDPS), 2017 IEEE

International. IEEE, 2017.

[5] Fleischer, Lisa K, Bruce Hendrickson,

and Ali Pınar. «On Identifying Strongly

Connected Components in Parallel». In

Lecture Notes in Computer Science, Volume

1800, Springer, 2000, pp. 505–11.

[6] Hong, Sungpack, Nicole C Rodia, and

Kunle Olukotun. «On Fast Parallel Detection

of Strongly Connected Components (SCC) in

Small-World Graphs», Proceeedings of

SC'13, 1–11, New York, New York, USA:

ACM Press, 2013.

Figure 5.16 Parallel acceleration and parallel efficiency comparison for NEC SX, Intel KNL, and
Skylake architectures.

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
Final Report for JHPCN Joint Research of FY 2017, May 2018

18

[7] Jiˇr ı Barnat, Petr Bauch, Lubosˇ Brim,

and Milan Cˇesˇka. «Computing Strongly

Connected Components in Parallel on

CUDA». Faculty of Informatics, Masaryk

University, Botanicka 68a, 60200 Brno,

Czech Republic.

6. Progress of FY2017 and Future Prospects

As we planned, four graph algorithms have

been implemented on NEC SX-ACE and

conducted performance analysis by

considering the characteristics of each

algorithms. Through the initial analysis of

the first versions of implementation, the

optimization candidates are clarified. Then,

optimizations for NEC SX-ACE have been

applied to these four graph algorithms. By

appropriate optimizations, the potential of

the vector data processing to the graph

problems is clarified.

 For future work, further optimizations

for Transitive Closure, which is one of the

graph algorithms, need to be performed.

Furthermore, as there are other graph

algorithms that are not implemented on a

vector architecture, these graph algorithms

are the target to find more vector-friendly

algorithms.

7. List of Publications and Presentations

(1) Journal Papers

(2) Conference Papers

1. Ilya Afanasyev, Vladimir Voevodin, “The

comparison of large-scale graph

processing algorithms implementation
methods for Intel KNL and NVIDIA

GPU”, large-scale graph processing

Workshop, Sep. 2017.
2. Ryusuke Egawa, Kazuhiko Komatsu,

Yoko Isobe, Toshihiro Kato, Souya

Fujimoto, Hiroyuki Takizawa, Akihiro

Musa and Hiroaki Kobayashi,

“Performance and Power Analysis of
SX-ACE using HP-X Benchmark

Programs,” Proceedings of IEEE

International Conference on Cluster
Computing 2017, pp. 693-700, Sep. 2017.

3. Hiroyuki Takizawa, Thorsten Reimann,

Kazuhiko Komatsu, Takashi Soga,
Ryusuke Egawa, Akihiro Musa and

Hiroaki Kobayashi, “Vectorization-aware

Loop Optimization with User-defined
Code Transformations”, Proceedings of

IEEE International Conference on Cluster

Computing 2017, pp. 685 – 692, Sep. 2017.
4. Hiroyuki Takizawa, Kenta Yamaguchi,

Takashi Soga, Thorsten Reimann,

Kazuhiko Komatsu, Ryusuke Egawa,
Akihiro Musa and Hiroaki Kobayashi,

"Migrating an old vector code to modern

vector machines," accepted for
presentation at The 30th International

Conference on Parallel Computational

Fluid Dynamics, 2018.
5. Hiroyuki Takizawa, Thorsten Reimann,

Kazuhiko Komatsu, Takashi Soga,

Ryusuke Egawa, Akihiro Musa, and
Hiroaki Kobayashi, "Expressing the

differences in code optimizations

between Intel Knights Landing and NEC
SX-ACE processors," accepted for

presentation at the 13th World Congress

on Computational Mechanics / 2nd Pan
American Congress on Computational

Mechanics, 2018.

6. Afanasyev Ilya, “An Efficient
Implementation of the Transitive Closure

Problem on Intel KNL Architecture,” the

3rd Ural Workshop on Parallel,
Distributed, and Cloud Computing for

Young Scientists, 2017, �. 10-19.

7. Afanasyev I., Voevodin Vl, “The
Comparison of Large-Scale Graph

Processing Algorithms Implementation

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures
Final Report for JHPCN Joint Research of FY 2017, May 2018

19

Methods for Intel KNL and NVIDIA,”

Supercomputing. RuSCDays 2017, series

"Communications in Computer and
Information Science", Springer, Vol. 793,

p. 80-94.
(3) Oral Presentations

1. Ilya Afanasyev, “Efficient
Implementation of the Transitive Closure

Problem on Intel KNL Architecture”, 3rd

Ural Workshop on Parallel, Distributed,
and Cloud Computing for Young

Scientists (Ural-PDC 2017), Oct. 2017.

2. Hiroaki Kobayashi, “Two-Year
Experiences with Vector Supercomputer

SX-ACE and Design Space Exploration of

the Next Generation Vector System”,
Keynote Speech in Russian

Supercomputing Days 2017, Sep. 2017.

3. Alexander Antonov, Jack Dongarra,
Dmitry Nikitenko, Pavel Shvets,

Vladimir Voevodin, Changes in

Architectures Require Changes in
Implementation, not in Algorithms,”

Russian Supercomputing Days, Sep.

2017.
4. Vladimir Voevodin , The AlgoWiki

Project and Challenges of the

Well-Known Area,” Invited talk at the
3rd International High Performance

Computing Forum, Guanzhou, China,

Sept. 2017.
5. Vladimir Voevodin., “The AlgoWiki

Project: An Algorithmic Pillar of Exascale

Computing,” Invited talk at ATIP
workshop "International exascale and

next-generation computing programs",

Nov. 2017.
6. Vladimir Voevodin, “Algorithms,

Computing Platforms and Unlimited

Freedom of Comparison,” Invited talk at
the 27th Workshop on Sustained

Simulation Performance, March 2018

7. Vadim Voevodin, “HPC software for
mass analysis of parallel applications

efficiency,” Invited talk at the 27th

Workshop on Sustained Simulation

Performance, March 2018.
(4) Others

