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Abstract 
Since vector data processing is one of the key technologies for the next-generation 
supercomputing system, it is strongly required to clarify the capability of vector data 
processing. This project conducts the research on vector data processing potential 
that can be used both for development of new HPC systems and for the development 
of algorithms for extremely large-scale numerical problems. To this end, the 
research group of Lomonosov Moscow State University (MSU) that has experience 
with graph problems and the research group of Tohoku University that has 
experience with program development for vector supercomputers work together to 
clarify the potential of vector data processing on graph problems. The MSU group 
has developed various graph algorithms for an ultra-high scale that contains more 
than 109 vertices and edges. The research group of Tohoku University has knowhow 
to exploit the potential of vector supercomputers. By the international collaboration 
of the two groups, the theory and practice of vector data processing for ultra-high 
scale graph problems aims to be clarified. In this report, by the performance analysis 
of four graph problems on SX-ACE, the potential of the vector data processing to the 
graph problems is shown. 
 
 

1. Basic Information 

(1) Collaborating JHPCN Centers  

Cyberscience Center, Tohoku University 

(2) Research Areas 

o Very large-scale numerical computation 

o Very large-scale data processing 

o Very large capacity network technology 

■   Very large-scale information systems 

(3) Roles of Project Members 

This collaborative work is undertaken by 

Lomonosov Moscow State University (MSU) 

and Tohoku University. The researchers of 

MSU mainly focus on algorithm study and 

development of graph problems that can 

effectively utilize vector data processing. The 

researchers of Tohoku University conduct 

performance analysis and optimizations for 

obtaining aspects for development of next 

generation vector computer architectures. 

Lomonosov Moscow State University (Russia) 

o Vladimir Voevodin (Algorithm Development) 

o Dmitry Nikitenko (Performance analysis and 

statistics) 

o Alexander Antonov (Informational structure 

analysis) 

o Alexey Teplov (Scalability and performance 

analysis) 

o Ilya Afanasyev (Code design and code 

optimization) 

Tohoku University (Japan) 

o Hiroaki Kobayashi (Code optimization and 

performance analysis) 

o Hiroyuki Takizawa (Code optimization and 

performance analysis) 

o Akihiro Musa (Code design and code 

optimization) 

o Ryusuke Egawa (Code optimization and 

performance analysis) 

o Kazuhiko Komatsu (Code design and code 

optimization) 

 

2. Purpose and Significance of the Research 

 The overall goal of this project is the 

deep research on vector processing potential 
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on large-scale numerical methods. The 

obtained knowledge of this project can be 

useful not only for developments of new 

vector supercomputing systems, but also for 

developments of extremely large-scale 

numerical solutions.  

 To this end, this project focuses on a 

graph problem that is one of the important 

extremely large-scale numerical solutions. A 

graph problem is well known as the basis 

for solution of the wide range of applied and 

scientific challenges such as 

communicational and transport network 

optimization, social network analysis, and 

web data analysis. To satisfy the demands of 

these challenges, a graph problem with 

more than 109 vertices and edges should be 

solved. The Russian research group tries to 

solve such huge-scale graph problems by 

effectively utilizing the vector data 

processing on vector supercomputing 

systems in this project. The Russian research 

group considers the efficient algorithm that 

is suitable for the vector data processing and 

implements the algorithm on vector 

supercomputing systems. 

 Furthermore, by collaborating with the 

Tohoku university research group that has a 

long experience with operation and 

development of vector supercomputing 

systems, the vector-friendly graph algorithm 

is further optimized and tuned so as to fully 

exploit the potential of vector 

supercomputing systems. 

 Through this collaborative work of both 

groups about theory and practice, these 

research efforts become public to share 

valuable results and knowledge. For 

example, as a part of the AlgoWiki project 

that is mainly developed and maintained in 

the Russian group, the valuable 

experimental data is open to be made 

commonly and widely available. These 

results are also positively utilized for 

development of other scientific applications 

as well as better understanding the 

requirements for the next generation vector 

processor and memory architecture. 

 The effective use of vector data 

processing becomes more essential for the 

future design of applications as vector data 

processing is widely used in x86 processors, 

IBM Power processors as well as vector 

processors. Therefore, the deep study on 

vector data processing is important for both 

supercomputer design and large-scale 

applications. 

 

3. Significance as a JHPCN Joint Research 

Project 

From the scientific aspects, this project can 

show the effectiveness of vector data 

processing in large-scale graph algorithms. 

The development in the vector-friendly 

graph algorithm is important. Thus, the 

JHPCN Joint Research Project is an 

excellent opportunity to conduct our joint 

interdisciplinary research between the 

Russian and Japan teams. 

 From the computational aspects, 

Russia has different supercomputing 

systems from Japan. Regarding vector 

supercomputing systems, currently, there 

are no vector systems in Russia. Thus, the 

JHPCN project helps to investigate and 

develop a graph algorithm that is suitable 

for vector data processing on vector 

supercomputing systems. 

4. Outline of the Research Achievements up 

to FY2016 



Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures 
Final Report for JHPCN Joint Research of FY 2017, May 2018 

3 

As this year is the first year, there are no 

research achievements up to FY2016. 

 

5. Details of FY2017 Research Achievements 

In the period of FY2017, we have conducted 

performance evaluation of four graph 

problems using an Intel Xeon Gold 

processor, an Intel Xeon Phi Knights 

Landing processor. Then, we have been 

working on deep performance and 

bottleneck analysis of graph algorithms on a 

vector processor, especially NEC SX-ACE. 

5.1 Performance evaluation of Single Source 

Shortest Path (SSSP) problem 

5.1.1 Problem description of SSSP 

An undirected graph 𝐺 = 𝑉,𝐸 with 

vertices 𝑉 = (𝑣!, 𝑣!,… , 𝑣!)  and edges 

𝐸 = (𝑒!, 𝑒!,… , 𝑒!) is given. Each edge 𝑒 ∈ 𝐸 

has a weight value 𝑤 𝑒 . The path between 

vertices 𝑢  and 𝑣  is defined as edges 

sequence 𝜋!,! = (𝑒!,… , 𝑒!) , beginning in 

vertex 𝑢 and ending in vertex 𝑣, so each 

edge follows another one. The path length 

can be defined as 𝑤 𝜋!,! = 𝑤 𝑒!!
!!! .  A 

path 𝜋!,!∗ , which has a minimal possible 

length between vertices 𝑢 and 𝑣, is called 

the shortest path: 𝑑 𝑢, 𝑣 = 𝑤 𝜋!,!∗ =

min𝑤 𝜋!,! . 

 Depending on the choice of a vertex pair 

between which the search is performed, the 

shortest paths problem can be formulated in 

three different ways: 

• SSSP (single source shortest paths) 

computes the shortest paths from a 

single selected source vertex. 

• APSP (all pairs shortest paths) 

computes the shortest paths between 

all pairs of graph vertices. 

• SPSP (some pairs shortest paths) 

computes the shortest paths between 

some pre-selected pairs of vertices. 

 In this project, the SSSP problem is 

examined, since it is the simplest and most 

basic for other problems: for example, the 

APSP problem for large-scale graphs can be 

solved by repeated calls of the SSSP 

operations for each source vertex, since 

traditional algorithms, such as 

Floyd-Warshal, cannot be applied because of 

the high memory costs. 

 

5.1.2 Algorithm description 

The SSSP problem can be solved with three 

traditional algorithms: Dijkstra, 

Bellman-Ford, and Delta-stepping. 

• Dijkstra's algorithm is designed to 

solve the problem in graphs with edges, 

having only non-negative weights. 

Variation of the algorithm, 

implemented with Fibonacci heap has 

the asymptotically fastest time 

𝑂 |E| + |V|log|V| . The computations of 

this algorithm include sequential 

traversal of vertices, starting from the 

source vertex, while putting adjacent 

vertices to the stack (heap) to be 

processed later. As a result, the 

algorithm can be executed only 

sequentially.  

• The Bellman-Ford algorithm is 

designed to solve the problem in 

graphs, including edges with negative 

weights. The computational kernel of 

the algorithm consists of a few 

iterations, which require traverses of all 

graph edges; the array of distances is 

computed from the data of each edge. 

The computations continue until there 

are no changes in the distance array. 

The algorithm has sequential 
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complexity equal to 𝑂 𝑝|E| , where 𝑝 

is the maximum possible length of the 

shortest path from the source vertex to 

any other. As a consequence, the 

worst-case complexity is equal to 

𝑂 |V||E| , however, for many 

real-world graphs, the algorithm is 

finished in a much smaller number of 

steps. Moreover, the algorithm has a 

significant parallel potential: its parallel 

complexity is equal to 𝑂 𝑝 |!|
!

, where 

N is the number of processors used. 

• The delta-stepping algorithm is 

designed to solve the single source 

shortest paths problem using novel 

data-structures called buckets. It can be 

viewed as a generalization of the 

Bellman-Ford algorithm, aiming to 

improve its complexity in a average 

sense. For random directed graphs with 

!
|!|

 and uniformly distributed edge 

weights, the algorithm completes 

computations in 𝑂 (!"#|!|)^!
(!"# !"#|!|)

. 

5.1.3 Implementation details of SSSP 

First of all, it is very important to select the 

most suitable algorithm for the target NEC 

SX architecture. Since Dijkstra’s algorithm is 

naturally sequential and requires complex 

data structures as well as the Delta-stepping 

algorithm, those algorithms are not 

implemented on NEC SX architecture. On 

the other hand, the Bellman-Ford algorithm 

does not require complex data structure 

processing. Moreover, each iteration of this 

algorithm is a parallel traversal of all graph 

edges, where parallel processing and 

vectorization can be applied. 

 During the selection of the most suitable 

algorithm for particular parallel architecture, 

parallel algorithm properties have to be 

studied. For this purpose, informational 

graphs, introduced in [1], can be used. 

Figure 5.1 demonstrates informational 

graphs of the Bellman-Ford algorithm. 

 
Figure 5.1 Informational graph of 
Bellman-Ford algorithm 

Figure 5.2 Graph edges reordering example 
for graph with 5 vertices and 16 edges 
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 Parallel operations as shown in named 3 

in Figure 5.1 correspond to independent 

updates of graph edges on each  iteration, 

while operations in named 2 correspond to 

parallel initialization of distances array. Both 

those operations can be successfully 

parallelized and vectorized. 

 Before implementing the chosen 

algorithm, it is important to determine the 

storage data format for input graphs. For the 

Bellman-Ford algorithm, the most suitable 

format is an edges list, where each edge is 

stored as a triple {vertex-start, vertex-end, 

edge’s weight}; all edges are stored in a 

single array in any order. Moreover, this 

format allows simpler vectorization and 

possible sorting-optimization, which aims to 

improve data locality. Thus, this format is 

going to be used for all implementations in 

this research project.  

 To achieve data locality improvement on 

per-edge updates (indirected memory 

accesses, parallel operations on 

informational graph), the main optimization 

used is graph edges reordering. This 

optimization significantly improves memory 

access pattern, which allows the algorithm 

to achieve much higher performance, since 

the data with indirect memory accesses are 

placed more locally and stored in caches for 

the longer period of time. The reordering is 

implemented in the following way: an array 

of distances is divided into segments (red, 

green and blue colors on Figure 5.2), whose 

sizes are equal to the size of the lowest level 

cache on the target architecture. Then, the 

edges are placed into the array in the 

following way: from the beginning of the 

array, an edge, whose source vertices belong 

to the first segment of distances array, is 

sorted. Then, the second and the third edges 

are sorted in order. Edges with the same 

segment number are sorted with the similar 

strategy, applied to their destination 

vertices. 

 Vectorization itself is achieved with help 

of #pragma cdir nodep directive and sxc++ 

compiler. 

 

5.1.4 Evaluation of the Bellman-Ford 

algorithm on NEC SX, Intel KNL, and 

Skylake systems  

Table 5.1.  System configurations. 

Model 
name 

Intel Xeon 
Gold 6126 

Intel Xeon 
Phi 7230 

NEC 
SX-ACE 

Socket 1 1 1 

Cores per 
socket 12 64 4 

CPU MHz 2601 1297 1000 

L1d cache 32K 32K 1M 

L2 cache 1024K 1024K - 

L3 cache: 19712K - - 

 
 

Figure 5.3 Performance (in MTEPS) of multi 
core implementations of the Bellman-Ford 
algorithm. 
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This section describes the comparisons of 

performances of the Bellman-Ford algorithm 

among three different architectures: NEC 

SX-ACE, Intel Knight Landing (KNL), and 

Intel Skylake.  

 All results presented in this report have 

been obtained on two supercomputers: NEC 

SX-ACE in Tohoku University, and 

Lomonosov-2 in Lomonosov Moscow State 

University. Lomonosov-2 has several 

partitions with different configurations, 

including nodes with Intel Xeon Gold 6126 

and Intel Xeon Phi 7230. The specifications 

of those systems are presented in Table 5.1. 

In general, the KNL has the highest number 

of lightweight cores among the reviewed 

architectures, in the meantime with the 

smallest amount of cache memory. 

Moreover, in current configuration on 

Lomonosov-2, KNL has high-bandwidth 

MCDRAM memory, which can be used as a 

large last-level cache on a variety of 

problems. 

 In order to compare different graph 

algorithms implementations between 

different architectures, a performance metric 

is widely used. When the algorithm 

processes a fixed graph with a total amount 

of |E| edges in T seconds, the performance 

can be calculated in this way. 

 

𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒(𝑖𝑛𝑇𝐸𝑃𝑆) =
|𝐸|
𝑇

=
𝑒𝑑𝑔𝑒𝑠𝑐𝑜𝑢𝑛𝑡
𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑡𝑖𝑚𝑒

 

 

 Thus, the performance metric indicates 

the amount of Traversed Edges Per Second 

(TEPS) of a fixed graph during algorithm 

execution time. This metric can be calculated 

for both single-core and multicore 

implementations; Figure 5.3 demonstrates 

performance comparison between multicore 

implementations for three different 

architectures. 

 Since all three architectures have 

different numbers of cores, it is interesting to 

compare performance values obtained on a 

single core of each target processor. For 

these purposes we use 2 metrics: performance 

per core, which is a performance in TEPS 

metric, obtained on a single core of each 

 

Figure 5.4 Performance (in MTEPS) of single core implementations of the Bellman-Ford algorithm. 
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target processor, and performance per core 

normalized, which is usual performance in 

TEPS obtained on maximum number of 

cores on a target processor, divided by the 

number of cores used during computations 

(4 for NEC SX, 12 for Skylake, 64 for Intel 

KNL). In general, a performance per core 

metric represents how well an algorithm 

utilizes single core computational 

capabilities of the target system, while a 

performance per core normalized metric takes 

into an account how well all the cores work 

together on a multicore system. 

 Figure 5.4 demonstrates performance 

per core comparison between 

implementations for three different 

reviewed architectures. These figures clearly 

show that the performance of NEC SX is 

comparable to or higher than those of 

Skylake and KNL in the case of the single 

core performance. This is because the 

algorithm implemented is suitable for the 

vector architecture. Thus, the average vector 

length and vector operation ratio, which are 

important metrics for the vector architecture, 

are very high of 99.62% and 255.9, 

respectively. Therefore, NEC SX could 

achieve such performance. 

 In order to further evaluate parallel 

efficiency of the developed implementations, 

we use another 2 widely used metrics: 

parallel efficiency and parallel acceleration, 

which can be calculated using the following 

formulas:  

 

𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 =
𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝑡𝑖𝑚𝑒
𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑡𝑖𝑚𝑒

=
𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒
𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒

 

 

 

 

𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =

𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝑡𝑖𝑚𝑒
𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑡𝑖𝑚𝑒
𝑐𝑜𝑟𝑒𝑠 𝑛𝑢𝑚𝑏𝑒𝑟

∗ 100

=

𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒
𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒

𝑐𝑜𝑟𝑒𝑠 𝑛𝑢𝑚𝑏𝑒𝑟
 

 

 Figure 5.5 demonstrates the parallel 

   
Figure 5.5 Performance (in MTEPS) of single core implementations of the Bellman-Ford algorithm. 



Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures 
Final Report for JHPCN Joint Research of FY 2017, May 2018 

8 

acceleration and parallel efficiency derived 

by these equations. The parallel efficiencies 

of NEC SX is higher than or comparable to 

those of Skylake. More investigation is 

required when the graph scale is more than 

24 in the case of NEC SX. 

 

5.2 Performance evaluation of BFS problem 

5.2.1 Problem description of BFS 

An undirected graph 𝐺 = 𝑉,𝐸 with 

vertices 𝑉 = (𝑣!, 𝑣!,… , 𝑣!)  and edges 

𝐸 = (𝑒!, 𝑒!,… , 𝑒!)  is given. The path 

between vertices 𝑢  and 𝑣  is defined as a 

set arcs𝜋!,! = (𝑒!,… , 𝑒!), beginning in vertex 

𝑢  and ending in vertex 𝑣 , so each edge 

follows another one. A length 𝑑 𝑢, 𝑣  of 

path 𝜋!,! between 𝑢 and 𝑣 vertices is the 

number of its arcs (edges). The breadth-first 

search finds the shortest 𝑑 𝑢, 𝑣  from a 

specified vertex 𝑢 to all the other nodes. (1) 

 There are several possible modifications 

of the BFS problem: 

• it is required only to check which 

vertices are reachable from specified 

source vertex; (2) 

• it is required to find out «parent» 

vertex for each one. (3) 

 In this report, we have investigated and 

implemented the basic version (1) of the 

problems, such as SCC and transitive 

closure. The BFS employs the version (2). 

 

5.2.2 Algorithms for BFS 

BFS is a fundamental problem of graph 

processing, so there are a lot of algorithms 

that have been designed so far.  

• Frontier-based BFS is a classical 

algorithm for solving the BFS 

problem on processors. The 

algorithm is based around storing 

vertices, reached on the current step 

in a separate data-structure called 

frontier. Also, there have been many 

implementations for multi-core 

CPUs and GPU. 

• Direction-optimizing BFS is a novel 

approach to BFS, widely used 

nowadays. This approach uses two 

different bottom-up and top-down 

stages; the top-down stage is usually 

corresponding to the basic 

frontier-based approach, while the 

bottom-up stage is a reverse 

direction search. Combining these 

two approaches allows one to check 

significantly fewer edges, which 

results in significant accelerations 

obtained [2][3].  

 
Figure 5.6 Performance (in MTEPS) of multi 
core implementations of the 
Bellman-Ford-based BFS algorithm for NEC 
SX, Intel KNL, and Skylake architectures. 
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• SpMV-based BFS is based on 

sparse-matrix dense-vector (SpMV) 

multiplications, to which the BFS 

problem can be reduced. A 

implementation of this method for 

vector architectures (Intel KNL) is 

described in [4], where authors claim 

that even though this approach has 

great computational complexity, it is 

still more suitable for modern vector 

architectures. It is shown that this 

approach demonstrates comparable 

results to the state-of-art 

implementations.  

• Bellman-ford based BFS has 

approximately the same 

computational complexity as the 

SpMV-based BFS, but has different 

data-structures used. The idea of this 

approach is very similar to the 

  
Figure 5.7 Performance (in MTEPS) of single core implementations of the Bellman-Ford-based BFS 
algorithm for NEC SX, Intel KNL, and Skylake architectures. 

  
Figure 5.8 Parallel acceleration and parallel efficiency comparison for NEC SX, Intel KNL, and 
Skylake architectures. 
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Bellman-Ford shortest paths 

algorithm, where weight-distances 

updates are replaced with 

reachability or integer distances 

arrays. 

 

5.2.3 Implementation details of BFS 

In this report, the Bellman-Ford based BFS is 

implemented. It has very similar potential 

for vectorization and concurrency. The 

#pragma cdir vprefetch directive, the 

#pragma cdir vovertake directive, the 

#pragma cdir vob directive, and manual loop 

unrolling are used to effectively issue the 

vector gather/scatter instructions by 

overtaking other vector instructions. 

 

5.2.4 Evaluation of the Bellman-Ford based 

BFS on NEC SX, Intel KNL, and Skylake 

systems 

Similar to the evaluation of SSSP, Figure 5.6 

demonstrates the performance comparison 

between multicore implementations for 

three different architectures. Figure 5.7 

demonstrates performance per core 

comparison. Figure 5.8 demonstrates the 

parallel acceleration and parallel efficiency. 

From these figures, the parallel efficiencies 

of NEC SX are higher than those of the 

others, and the high efficiency can be 

obtained even when the graph scale is small. 

A high vector operation ratio of 99.62% and 

a high average vector length of 255.9 

contribute to the high efficiency in the case 

of the single core performance. 

 

5.3 Performance evaluation of the SCC problem 

5.3.1 Problem description of SCC 

A directed graph 𝐺 = 𝑉,𝐸 with vertices 

𝑉 = (𝑣!, 𝑣!,… , 𝑣!)  and edges 

𝐸 = (𝑒!, 𝑒!,… , 𝑒!) is given. Edges may not 

have any data assigned (so graphs without 

edges weights are discussed in current 

section). A strongly connected component 

(SCC) of a directed graph G is a strongly 

connected subgraph, which is maximal 

within the following property: no additional 

edges or vertices from G can be included in 

the subgraph without breaking its property 

of being strongly connected. 

 

 

  
Figure 5.9 Informational graph of Forward-Backward-Trim algorithm: top-level (left), trim-step 
(right). 
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5.3.2 Algorithm description of SCC 

SCCs in the BFS can be found with one of 

the following algorithms. 

• Tarjan's algorithm is based on a 

single depth first search (DFS) and 

uses 𝑂(|E|) operations. Due to the 

fact that the algorithm is based on 

the DFS, only a sequential 

implementation is possible. 

• The DCSC algorithm (Divide and 

Conquer Strong Components), or FB 

(Forward-backward) is based on the 

BFS and requires 𝑂(|E| ∗ log(|E|)) 

operations. This algorithm is initially 

designed for parallel 

implementations: in each step, it 

finds a single strongly connected 

component and allocates the 

component up to three subgraph, 

each of which may contain other 

strongly connected components, and, 

as a result, this algorithm can be 

processed in parallel. 

• Variations of the DCSC algorithm 

are proposed such as Coloring and 

FB with step-trim. These modified 

versions of the DCSC algorithm are 

described in detail in papers [5][6].  

 For obvious reasons, Tarjan's algorithm 

is not suitable for solving a problem on 

parallel architectures, since it is based on the 

depth first search as well as complex data 

structures (stack and queue) processing, 

which cannot be implemented efficiently on 

GPUs. 

 A large number of papers such as [7] 

have already investigated different variation 

of the DCSC algorithms. Different variations 

can be more or less effective for different 

types of graphs; the paper [7] concluded that 

the forward-backward-trim algorithm is the 

most efficient way to process graphs. 

 

5.3.3 Implementation details of SCC 

During the selection of the most suitable 

algorithm for particular parallel 

architectures, parallel algorithm properties 

have to be studied. For this purpose, 

informational graphs, introduced in [1], can 

be used.  

 Figure 5.9 demonstrates informational 

graph of the Forward-Backward-Trim 

algorithm. As one can see from the 

informational graph, the 

Forward-Backward-Trim algorithm is 

designed in the following way: on the first 

step (trim step), the removal of the strongly 

connected components of size 1 is 

performed. After that, in each step, the 

algorithm finds one nontrivial strongly 

connected component (FB-step) and 

allocates the component up to three 

subgraphs, each of which contains other 

components, and, more importantly, this 

algorithm can be processed in parallel. This 

step heavily relies on breadth-first search to 

find all vertices, which can be reached from 

the selected pivot vertex, and all vertices, 

from which pivot vertex can be reached. 

Thus, this algorithm has two levels of 

parallelism: BFS level and parallel subgraphs 

handling level, which are a big advantage for 

parallel target architectures. 
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 It is important to describe that both the 

Trim and FB steps can be successfully 

vectorized, since they both have a lot of 

independent operations on bottom level as 

shown in boxes 3, 4, 5, 7, 8, and inside BFS in 

Figure 5.9. 

 As a result, the parallel 

Forward-backward-Trim algorithm is 

implemented in the following way. First, in 

order to avoid building a reverse 

(transposed) graph, which is necessary for 

efficient backward search implementation, a 

graph is converted to the storage format of 

an edge list. To further increase the 

performance, the input edges list can be 

pre-sorted as described in Section 5.1.3. The 

approach greatly improves data locality and 

cache usage. Moreover, this optimization 

also significantly improves the trim step 

efficiency, since it has the similar memory 

access pattern. 

 By the first analysis of the performance 

of SCC on NEC SX, as the tendency of the 

behavior is similar to the BFS, the similar 

optimizations are applied to the 

Bellman-Ford based BFS such as the 

insertions of directives and manual 

unrolling in order to enhance the overtake of 

vector gather/scatter instructions. 

 

 
Figure 5.10 Performance (in MTEPS) of multi 
core implementations of Forward-Backward 
algorithm for NEC SX, Intel KNL and Skylake 
architectures. 

  

Figure 5.11 Performance (in MTEPS) of single core implementations of the Forward-Backward 
algorithm for NEC SX, Intel KNL, and Skylake architectures. 
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5.3.4 Evaluation of the Forward-Backward 

algorithm on NEC, KNL, and Skylake 

systems 

Figure 5.10 demonstrates the performance 

comparison between multicore 

implementations for three different 

architectures. Figure 5.11 demonstrates 

performance per core comparison. Figure 

5.12 demonstrates the parallel acceleration 

and parallel efficiency. These figures show 

that the performance of NEC SX is good 

when the graph scale is small such as 18, 19, 

and 20. However, as the graph scale increase, 

the performance and efficiency decrease. In 

the case of KNL, the performance and 

efficiency are stable and in the case of 

Skylake, the performance and efficiency 

increase. More analysis and optimizations 

are necessary for NEC SX for the 

Forward-Backward algorithm, especially in 

the case of the larger graph scale. 

 

5.4 Performance evaluation of Transitive 

Closure problem 

5.4.1 Problem description of Transitive 

Closure 

A directed graph 𝐺 = 𝑉,𝐸 with vertices 

𝑉 = (𝑣!, 𝑣!,… , 𝑣!)  and edges 

𝐸 = (𝑒!, 𝑒!,… , 𝑒!)  is given. The path 

between vertices 𝑢  and 𝑣  is defined as 

edges sequence 𝜋!,! = (𝑒!,… , 𝑒!), beginning 

in vertex 𝑢 and ending in vertex 𝑣, so each 

edge follows another one. Vertex 𝑣  is 

reachable from vertex 𝑢, if at least a single 

path 𝑃 𝑢, 𝑣  between vertices u and v exists 

(every vertex is considered reachable from 

itself). 

      
Figure 5.12 Parallel acceleration and parallel efficiency comparison for NEC SX, Intel KNL, and 
Skylake architectures. 
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 Computing the transitive closure of 

graph 𝐺 = 𝑉,𝐸 means obtaining graph 

𝐺! = 𝑉,𝐸! , where an edge 𝐸 𝑣,𝑤  from 

𝐺 belongs to 𝐸! if and only if vertex 𝑤 is 

reachable form vertex 𝑣 in graph 𝐺. As a 

result, the transitive closure problem 

solution requires the |V|!  storage space. 

Thus, the memory capacity of a node of 

modern computers is not enough even for 

medium-sized graphs (starting with around 

2!" vertices). For this reason, the 

generalization of the transitive closure 

problem is used: only the specified pairs of 

vertices (𝑢!, 𝑣!) , (𝑢!, 𝑣!) , …, (𝑢!, 𝑣!)  are 

checked to belong to the transitive closure. 

The number of the pairs required to check 𝑛 

becomes an additional flexible algorithm 

parameter: varying it may greatly affect the 

overall algorithm performance. 

 

5.4.2 Algorithm of Transitive Closure 

The transitive closure computation problem 

in directed graph G can be solved using 

three different traditional approaches, 

described below.  

1. The transitive closure computation can be 

reduced to the shortest paths computation 

in a corresponding graph with identical 

weights. Consequently, it can be solved 

with the Floyd-Warshall algorithm, 

introduced in [3] and [4]. This algorithm 

has the O(|V|3) computational 

complexity, and historically is the first 

developed algorithm for the transitive 

closure problem solution [5]. An 

important property of the Floyd-Warshall 

algorithm is O(|V|2) memory 

requirement for computations, which 

immediately reduces its applicability only 

to small-scale graphs.  

  
Figure 5.13 Informational graph of Purdom's algorithm. 
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2. The transitive closure can be obtained 

using several multiple BFS, executed from 

each vertex of the graph. The BFS 

algorithm has been first described in [6]; 

the algorithm allows checking 

reachability between the selected source 

vertex and other vertices of the graph 

with only O(|E|+|V|) operations 

required (using a queue-based 

implementation approach). As a result, 

the full transitive closure computation 

requires O(|V| ∗ (|V| + |E|)) operations 

3. Among the reviewed approaches, the 

most optimal computational complexity 

has Purdom’s algorithm, introduced in [7]. 

Purdom’s algorithm is based on the 

following idea: the transitive closure 

computation for graph G can be reduced 

to the transitive closure computation for 

graph G−, obtained from graph G by 

collapsing G’s strongly connected 

components into G− vertices. The 

described approach provides O(|E|+ 

u|V|) computational complexity, where 

u is the number of edges in graph G−. The 

provided estimate is based on the 

assumption that asymptotically optimal 

Tartan’s algorithm (O(|E|)) is used for 

strongly connected components 

computation; if another algorithm, such 

as the DCSC is used, computational 

complexity can be different. 

 

5.4.3 Implementation details of Transitive 

Closure 

Based on computational complexity 

estimates, the most suitable approach to 

solve the transitive closure problem is 

Purdom’s algorithm. However, during the 

selection of the most suitable algorithm for 

particular parallel architectures, the 

properties of the parallel algorithm have to 

be studied. Figure 5.13 demonstrates an 

informational graph of Purdom’s algorithm. 

The presented graph is rather complicated 

and therefore includes two subgraphs, each 

one corresponding to an important 

algorithm building-block: the BFS and SCC 

computations. 

 Thus, the developed algorithm can be 

divided into 4 separate stages (steps):  

1. Detecting strongly connected 

components in input graph G,  

2. Creating intermediate representation 

 
Table 5.2 The comparison of sizes between original input graphs and corresponding intermediate 

representation graphs. 
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graph G−,  

3. Computing an answer for all vertex 

pairs, related to the same strongly 

connected component,  

4. Computing an answer for the rest 

pairs, using parallel BFS in the 

intermediate representation graph 

G−. 

 If required, an intermediate 

representation graph can be saved to hard 

drive after stage 1. Then, the transitive 

closure can be found more efficiently due to 

no repeated SCC computation. 

 The edges sorting is not required for 

intermediate representation graph G−, since 

usually these graphs have a significantly 

smaller number of vertices compared to the 

original input graphs (while it is still used for 

the original graph G in order to improve the 

SCC step performance). As a result, 

corresponding reachability arrays of 

intermediate representation graphs usually 

fit into caches. Table 5.2 demonstrates 

comparison between sizes of original input 

 

Figure 5.14 Performance (in MTEPS) of multi core implementations of the Purdom’s algorithm 
for NEC SX, Intel KNL, and Skylake architectures. 

  

Figure 5.15 Performance (in MTEPS) of single core implementations of the Purdom’s algorithm for 
NEC SX, Intel KNL, and Skylake architectures. 
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graphs and graphs of corresponding 

intermediate representations.  

 In the loops, the container functions are 

utilized and these functions prevent 

vectorization. By avoiding using the 

functions, the compiler could vectorize the 

code. 

 

5.4.4 Evaluation of Puron’s algorithm on NEC, 

KNL, and Skylake systems 

Figure 5.14 demonstrates the performance 

comparison between multicore 

implementations for three different 

architectures. Figure 5.15 demonstrates 

performance per core comparison. Figure 

5.16 demonstrates the parallel acceleration 

and parallel efficiency. These figures show 

that the performances of NEC SX and KNL 

are not high compared to Skylake. In this 

algorithm, the deep analysis and further 

optimization are mandatory to exploit the 

potential of NEC SX-ACE. 
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6. Progress of FY2017 and Future Prospects 

As we planned, four graph algorithms have 

been implemented on NEC SX-ACE and 

conducted performance analysis by 

considering the characteristics of each 

algorithms. Through the initial analysis of 

the first versions of implementation, the 

optimization candidates are clarified. Then, 

optimizations for NEC SX-ACE have been 

applied to these four graph algorithms. By 

appropriate optimizations, the potential of 

the vector data processing to the graph 

problems is clarified. 

 For future work, further optimizations 

for Transitive Closure, which is one of the 

graph algorithms, need to be performed. 

Furthermore, as there are other graph 

algorithms that are not implemented on a 

vector architecture, these graph algorithms 

are the target to find more vector-friendly 

algorithms. 
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