
Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures

Final Report for JHPCN Joint Research of FY 2016, May 2017

1

JH160041-NAHI

Hierarchical Low-Rank Approximation Methods on Distributed Memory

and GPUs

Rio Yokota（Tokyo Institute of Technology）

Hierarchical low-rank approximation methods such as H-matrix, H2-matrix, and

HSS can compress a dense matrix with O(N2) elements into a hierarchical matrix

with O(N) elements. By using such compressed matrices it is possible to perform

matrix-matrix multiplication, LU decomposition, and eigenvalue computation in

near-linear time. Hierarchical matrices can also be applied to the Schur

complements that arise in sparse direct solvers, so their applicability extends to fluid,

structure, and electromagnetic simulations. However, these hierarchical algorithms

are rather new and highly optimized implementations do not exist at the moment. A

highly optimized distributed memory GPU implementation is needed to extract the

potential parallelism of these methods.

1. Basic Information

(1) Collaborating JHPCN Centers

The University of Tokyo

Information Technology Center

Tokyo Institute of Technology

Global Scientific Information and

Computing Center

Hokkaido University

Information Initiative Center

Kyoto University

Academic Center for Computing and Media

Studies

(2) Research Areas

☑ Very large-scale numerical computation

 Very large-scale data processing

 Very large capacity network technology

 Very large-scale information systems

(3) Roles of Project Members

Rio Yokota (Tokyo Institute of Technology)

Low-rank approximation using FMM and

its GPU-MPI implementation

Ichitaro Yamazaki (University of

Tennessee)

Development of distributed memory

runtime –ParSEC and blocked BLAS

library for GPU –block MAGMA

Akihiro Ida (University of Tokyo)

Feature extension of hybrid MPI/OpenMP

H-matrix code –HACApK, and its

integration with ParSEC and block

MAGMA

Takeshi Iwashita (Hokkaido University)

Application of HACApK to boundary

integral solvers for electromagnetics, and

optimization of H-matrix-vector product

Takayuki Aoki (Tokyo Institute of

Technology)

Application of HACApK to Poisson solvers

for multiphase flows

Satoshi Oshima (University of Tokyo)

GPU implementation of HACApK and

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures

Final Report for JHPCN Joint Research of FY 2016, May 2017

2

integration with MAGMA

Taku Hiraishi (Kyoto University)

Dynamic load-balancing of HACApK

Kengo Nakajima (University of Tokyo)

Extend capability of HACApK within the

ppOpen-HPC framework.

Jack Dongarra (University of Tennessee)

Development of distributed memory runtime

–ParSEC and blocked BLAS library for GPU

–block MAGMA

2. Purpose and Significance of the Research

 The present research aims to develop a high

performance implementation of hierarchical

low-rank approximations on distributed

memory and GPU systems. The distributed

memory implementation and GPU

implementation will be performed in a

incremental fashion by starting with

matrix-vector multiplication, then matrix

factorization, and finally eigenvalue solvers.

Even the matrix-vector product has important

applications in boundary integral solvers for

electromagnetics, so validation using real

applications can be performed every step of the

way.

2.1 Extension of H-matrices

 Distributed memory implementation of LU

factorization of H-matrices suffers from large

amount of communication and is not currently

implemented in HACApK. In the present work,

we switch to the non-hierarchical block

low-rank (BLR) structure and simplify the data

dependency during the LU factorization in

order to reduce the amount of communication.

In H-matrices, the dense matrix is

hierarchically subdivided into smaller and

smaller blocks, and each of these blocks must be

compressed using low-rank approximation

methods. HACApK uses adaptive cross

approximation (ACA) for the low-rank

approximation. ACA has a small number of

arithmetic operations but is known to fail in

cases with low local contrast. In the current

study, we will use the fast multipole method

(FMM) instead of ACA to perform the

compression more robustly without loss of

performance.

2.2 Implementing H-matrices on next

generation supercomputers

 Modern supercomputers have CPUs with tens

of cores, but future CPUs are anticipated to

have hundreds or even thousands of cores.

HACApK is optimized for multicore CPU, but

requires modifications to extract the full

potential of many core processors. To this end,

we need to rethink parallel algorithms by

considering hardware characteristics.

3. Significance as a JHPCN Joint Research

Project

 The significance of conducting the current

research joint with the team from the

University of Tennessee is the integration of the

tools that are being developed there. The

current work aims to extend the capability of

HACApK, which is the only open source hybrid

OpenMP/MPI parallel H-matrix library. There

are few efforts to use HPC technology in

H-matrix codes, let alone efforts to develop

highly optimized implementations on

many-core processors such as GPUs and Intel

Xeon Phis. The current project integrates other

popular libraries such as MAGMA, ParSEC,

Tascell, and exaFMM. The developer of each of

these libraries is a member of this project, so

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures

Final Report for JHPCN Joint Research of FY 2016, May 2017

3

the integration between these libraries can be

done effectively. The focus is on ease of code

development, while we also aim to solve

problems that could not be previously tackled.

4. Outline of the Research Achievements up

to FY 2015

 The current project started from FY 2016.

5. Details of FY 2016 Research

Achievements

5.1 Research Achievements of First Half of

FY 2016

 Our goal is to have a GPU implementation of

our H-matrix code, and extend it to LU

factorizations and use it as a preconditioner

[9]. To this end, understanding the relation

between H-matrices and FMM is critical,

because FMM is known to perform well on

GPUs and have recently possessed the ability

to be used not only as a mat-vec, but also a

preconditioner [1,30]. Therefore, during the

first half of FY2016 we focused on

understanding the relation between

H-matrices and FMM, because this is the

shortest path to achieving our objective.

 FMM and H-matrices lie at the opposite

ends of the spectrum of hierarchical low-rank

approximation methods [5], which are shown

in Figure 1. ``Compressed operators” in

Figure 1 represents a method which

recompresses the FMM translation matrix by

using SVD. There exists a compute-memory

tradeoff between FMM and H-matrices [17].

Figure 1. Compute-memory tradeoff in

hierarchical low-rank approximation method

Figure 2 Calculation time for a single

matrix-vector multiplication including setup

time for the Green’s function matrix of a 2-D

Laplace, 3-D Laplace, and 3-D Helmholtz

equation

This method was originally designed to

accelerate the translation of multipole

expansion in FMM. When this technique is

used the FMM becomes very similar to a

H2-matrix or HSS matrix. Therefore, we

perform a direct comparison between FMM

and HSS.

 We use the 2-D Laplace, 3-D Laplace, and

3-D Helmholtz equations as the problem of

interest, and generate the matrices from the

Green’s function. A single core of a 12 core

Ivy Bridge (E5-2695v2) is used for the

calculations. In Figure 2, we show the

calculation time for the FMM and HSS. The

x-axis is the size of the matrix, and the y-axis

is the calculation time in seconds. FMM has a

constant overhead so for small N it does not

show O(N) behavior. For sufficiently large N,

both FMM and HSS show O(N) behavior. It

can be seen that FMM is about 1000 times

faster than HSS [17]. This is due to the large

calculation cost of the algebraic compression

that HSS does, whereas the FMM does not.

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures

Final Report for JHPCN Joint Research of FY 2016, May 2017

4

Figure 3. Domain decomposition of H-matrix

Figure 4. Parallel speedup of H-matrix

Another important aspect of our work in the

first half of FY2016 is the load-balancing of

the distributed memory implementation [2].

The decomposition of a hierarchical matrix is

shown in Figure 4. In the present work, we

improve the load-balance by introducing a

dynamic load-balancing scheme that predicts

the ranks of each block [28]. We use a test

problem that gave poor load-balance for a

static load-balancing scheme, to validate our

new dynamic load-balancing scheme [7]. We

use dynamic task scheduling in OpenMP. The

solid line in Figure 5 is the result when we

use dynamic load-balancing. We can see that

all threads are calculating similar number of

elements.

Figure 5. Performance of BiCGSTAB using

HACApK for the mat-vec on multiple GPUs.

5.2 Research Achievements of Second Half of

FY 2016

In the second half of FY2016 we focused on

our final objectives of a) implementing

HACApK on GPU and b) extending HACApK

to LU decomposition.

 The GPU implementation of HACApK was

achieved through the use of MAGMA. Since

one of the developers of MAGMA – Ichitaro

Yamazaki was a collaborator in this project,

the integration of MAGMA with HACApK

was done in a very short amount of time. We

were therefore able to have a multi-GPU

version by the end of FY2016.

 The performance of HACApK on multi-GPU

is shown in Figure 3, where ``Comp” is the

computational kernels, ``Copy” is the CUDA

memory copy time, ``Comm” is the MPI

communication. The MPI communication

time eventually becomes the bottleneck

because the mat-vec computation part takes

very little time on the GPU.

 We have also extended HACApK to run on

the Xeon Phi Knights Landing [23]. This port

is more straightforward than that of the GPU,

since it is merely changing the BLAS library

to the AVX512 optimized version and

compiling for the Knights Landing.

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures

Final Report for JHPCN Joint Research of FY 2016, May 2017

5

(a) H-matrix (b) BLR

Figure 6. Contrast between a H-matrix and

BLR matrix structure. The dark red boxes are

dense matrices, while the light red boxes are

low-rank matrices. BLR is a non-hierarhical

block low rank matrix.

 We have successfully extended HACApK to

perform LU decomposition on H-matrices. We

chose to use the BLR format, which is a

non-hierarchical version of the block low-rank

matrices. This is due to the simpler data

dependency of BLR compared to H-matrices

when performing the LU decomposition. BLR

still uses low-rank approximation for the

off-diagonal blocks, and therefore does much

less arithmetic operations compared to the

dense matrices. Our initial experiments

showed that, the data-dependency of the

hierarchical matrix [6] greatly decreased the

available concurrency during the LU

decomposition. This is why we chose to use

the non-hierarchical BLR format, which is

more parallel.

 In order to assess the benefit of using

HACApK for LU decomposition, we compared

the LU decomposition in HACApK with

LAPACK and achieved up to 6 times speed up.

This proves that our approach of first

compressing the dense matrix into a

H-matrix form has a great benefit over

performing the LU decomposition on the

dense matrix directly.

6. Progress of FY 2016 and Future

Prospects

6.1 Progress of First Half of FY 2016

The progress of the first half of FY 2016 can

be summarized as follows:

 Analyzed the relation between the

analytical (matrix-free) FMM and the

algebraic H/H2/HSS-matrix

 Quantified the compute-memory

tradeoff between FMM and

H-matrices

 Studied the communication properties

of the domain decomposition of

hierarchical matrix structures

 Developed a dynamic load-balancing

scheme for hierarchical matrices

6.2 Progress of Second Half of FY 2016

The progress of the second half of FY 2016

can be summarized as follows:

 Developed the first GPU

implementation of a H-matrix code

 Achieved 8x speed up on a K40 GPU

over a 20 core Haswell GPU

 Extended the GPU H-matrix code to

handle multiple GPUs

 Achieved speed up on up to 15 GPUs

 Extended HACApK to handle LU

decomposition of H-matrices

 Achieved 6x speedup over LAPACK

6.3 Future Prospects

 For improving the scalability of the

distributed memory H-matrix codes, we are

considering the possibility of importing

various techniques from FMM. We have

studies the communication patterns of FMM

extensively and have constructed a

performance model that predicts the behavior

on the largest supercomputers such as Mira,

Titan, and Shaheen [10]. This performance

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures

Final Report for JHPCN Joint Research of FY 2016, May 2017

6

model was used to construct an

asymptotically superior communication

scheme for FMM [4]. The communication

pattern of H-matrices are identical to FMM so

these techniques should be directly applicable

to these algebraic variants of FMM. We have

also investigated the properties of

data-locality of FMM [21] and its

performance portability [27]. These findings

can also be transferred to HACApK in FY

2017 since the project has been renewed.

 The lack of straightforward parallelism in the

LU decomposition of H-matrices could possibly

be circumvented by the use of task-based

parallelism. We have been working on efficient

use of task-based parallelism [29], and

techniques to increase its robustness [13].

 Finally, we have been looking into the use of

H-matrices in both the convectional

applications such as electromagnetic boundary

integral problems [3][8], and also

non-traditional applications such as long-range

force calculation in Monte Carlo methods

[16][20][22] and molecular dynamics

simulations [19][25].

 A more recent effort has been to extend our

work on hierarchical low-rank approximation to

machine learning [11]. It is well known that

machine learning kernels require very low

accuracy. This is why NVIDIA is developing

16-bit arithmetic units, while Google goes

further and uses 8-bit arithmetic units in their

tensor processing unit (TPU). However, the

matrix-matrix multiplication is done exactly

with the O(N^3) dense matrix kernels in the

current implementation of NVIDIA and

Nervana (now Intels) machine learning

libraries. H-matrices can approximate the

matrix-matrix multiplication in O(Nlog2N) time

by sacrificing the accuracy. Therefore, it is a

perfect match for this application which

requires only 8-bit arithmetic accuracy. Since

H-matrices become exponentially faster as the

required accuracy decreases, there will be a

large benefit if these techniques can be used for

machine learning kernels.

7. List of Publications and Presentations

(1) Journal Papers

1. H. Ibeid, R. Yokota, J. Pestana, D. Keyes,

``Fast Multipole Preconditioners for

Sparse Matrices Arising from Elliptic

Equations”, Computing and Visualization

in Science, accepted.

2. S. Okuno, T. Hiraishi, H. Nakashima, M.

Yasugi, J. Sese: ``Parallelization of

Extracting Connected Subgraphs with

Common Itemsets in Distributed Memory

Environments”, Journal of Information

Processing, Vol. 25, pp, 256—267, 2017.

3. A. Ida, T. Ataka, T. Mifune, Y. Takahashi,

T. Iwashita, A. Furuya,``Application of

Improved H-matrices in Micromagnetic

Simulations”, (in press)

4. R. Yokota, ``Communication Optimization

of Distributed Memory FMM for Large

Scale Boundary Element Methods”,

Simulation, Vol. 35, No. 3, pp. 23–29,

2016.

5. R. Yokota, ``Tradeoff between FMM and

H2(HSS)-matrices”, Journal of the Japan

Society for Computational Engineering

and Science, Vol. 21, No. 4, pp. 3498–3501,

2016.

6. A. Ida, ``Numerical Computation and

Data Structure of Hierarchical Low-rank

Approximation Methods”, Simulation, Vol.

35, No. 3, pp. 30—36, 2016.

7. A. Ida, ``Low-rank Approximation

Methods for Large Scale Scientific

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures

Final Report for JHPCN Joint Research of FY 2016, May 2017

7

Computing”, Journal of the Japan Society

for Computational Engineering and

Science, Vol. 21, No. 4, pp. 10-13, 2016.

8. A. Ida, T. Iwashita, T. Mifune, Y.

Takahashi, ``Framework for Parallel

Boundary Element Analysis Using

H-matrices and its Application”, Journal

of the Japan Society for Computational

Engineering and Science, Vol. 21, No. 4,

pp. 22-25, 2016.

9. A. Ida, T. Iwashita, T. Mifune, and Y.

Takahashi, ``Variable Preconditioning of

Krylov Subspace Methods for

Hierarchical Matrices With Adaptive

Cross Approximation”, IEEE

Transactions on Magnetics, Vol. 52, Issue

3, Article# 7205104, 2016

10. H. Ibeid, R. Yokota, D. Keyes, ``A

Performance Model for the

Communication in Fast Multipole

Methods on HPC Platforms”,

International Journal of High

Performance Computing Applications, Vol.

30, No. 4, pp. 423–437, 2016.

11. J. Castrillon, R. Yokota, M. Genton,

``Multi-Level Restricted Maximum

Likelihood Covariance Estimation and

Kriging for Large Non-Gridded Spatial

Datasets”, Spatial Statistics, Vol. 18, pp.

105–124, 2016.

12. A. Ida, T. Iwashita, M. Ohtani, K.

Hirahara, ``Improvement of Hierarchical

Matrices with Adaptive Cross

Approximation for Large-scale

Simulation”, Journal of Information

Processing, Vol. 23, No. 3, pp.366—372,

2016.

13. T. Hiraishi, S. Okuno, M. Yasugi, ``An

Implementation of Exception Handling

with Collateral Task Abortion”, Journal of

Information Processing, Vol. 24, No. 2, pp.

439-449, 2016.

(2) Conference Papers

14. T. Iwashita, A. Ida, T. Mifune and Y.

Takahashi, ``Software Framework for

Parallel BEM Analyses with H-matrices

Using MPI and OpenMP”, Tools for

Program Development and Analysis in

Computational Science, ICCS2017. (in

press)

15. T. Iwashita, A. Ida, T. Mifune and Y.

Takahashi, ``Software Framework for

Parallel BEM Analyses with H-matrices”,

IEEE 17th Biennial Conference on

Electromagnetic Field Computation,

Miami USA, Novevmber 13, 2016

(3) Conference Presentations

16. R. Igarashi, A. Ida, ``Monte Carlo

Simulation Using Approximate

Long-Range Force Calculations”, 72nd

Annual Conference of the Physical

Society of Japan, Osaka, Japan, March 17,

2016.

17. R. Yokota, ``Compute-Memory Tradeoff in

Hierarchical Low-Rank Approximation

Methods”, SIAM Conference on

Computational Science and Engineering,

Atlanta, USA, February 27, 2017.

18. A. Ida, ``Low Rank Approximation

Methods Used in Hierarchical Matrices”,

ATAT in HPC 2017, Taipei, Taiwan,

March 11, 2017.

19. R. Yokota, ``Energy Conservation of Fast

Multipole Methods in Classical Molecular

Dynamics Simulations”, 7th AICS

International Symposium, Kobe, Japan,

February 24, 2017.

20. R. Igarashi, A. Ida, ``Monte Carlo

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures

Final Report for JHPCN Joint Research of FY 2016, May 2017

8

Simulation Using Approximation to Long

Range Interactions”, 1st International

Symposium on Research and Education of

Computational Science, Tokyo, Japan,

November 30, 2016.

21. R. Yokota, ``Improving Data Locality of

Fast Multipole Methods”, Third

Workshop on Programming Abstractions

for Data Locality, Kobe, Japan, October

24, 2016.

22. R. Igarashi, A. Ida, ``Monte Carlo

Simulation Using Approximate

Long-Range Force Calculations”, Autumn

Conference of the Physical Society of

Japan, Kanazawa, Japan, September 14,

2016.

23. S. Ohshima, A. Ida, H. Hanawa, N, Kawai,

``Optimizing Hierarchical Matrix-Vector

Multiplication on Many-Core

Architectures”, Summer United

Workshops on Parallel, Distributed and

Cooperative Processing, Matsumoto,

Japan, August 8, 2016.

24. A. Ida, ``Matrix Operations Using

Hierarchical Matrix Forms”, Summer

United Workshops on Parallel,

Distributed and Cooperative Processing,

Matsumoto, Japan, August 8, 2016.

25. R. Yokota, ``Fast Multipole Method

Library for Multiple Architectures and its

Application to Molecular and Fluid

Simulations”, 8th Symposium of the Joint

Usage/Research Center for

Interdisciplinary Large-scale Information

Infrastructures, Tokyo, Japan, July 14,

2016.

26. A. Ida, ``Application of Hierarchical

Matrices with Adaptive Cross

Approximation to Large-scale

Simulations”, ISC High Performance

2016, Frankfurt, Germany, June 23, 2016.

27. R. Yokota, ``Perforamance Portability of

FMM, 21st Conference of Japan

Computational Engineering Society”,

Niigata, Japan, May 31, 2016.

28. A. Ida, T. Hiraishi, T. Iwashita,

``Predicting and Balancing

Computational Load in Hierarchical

Matrix Methods”, 21st Conference of

Japan Computational Engineering

Society”, Niigata, Japan, May 31, 2016.

29. S. Okuno, T. Hiraishi, H. Nakashima, M.

Yasugi, J. Sese, ``Reducing Redundant

Search using Exception Handling in a

Task-Parallel Language”, 21st

International Workshop on High-Level

Parallel Programming Models and

Supportive Environments, Chicago, USA,

May 23, 2016.

30. H. Ibeid, R. Yokota, D. Keyes, ``A

Matrix-Free Preconditioner for Elliptic

Solvers Based on the Fast Multipole

Method”, SIAM Conference on Parallel

Processing for Scientific Computing,

Paris, France, April 12, 2016.

(4) Others

31. A. Ida, ``Development of H-matrices with

ACA for Large-scaled BIEM Analyses”,

24th Advanced Supercomputing

Environment Seminar, Tokyo, Japan,

December 1, 2016.

