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Hierarchical low-rank approximation methods such as H-matrix, H2-matrix, and 

HSS can compress a dense matrix with O(N2) elements into a hierarchical matrix 

with O(N) elements. By using such compressed matrices it is possible to perform 

matrix-matrix multiplication, LU decomposition, and eigenvalue computation in 

near-linear time. Hierarchical matrices can also be applied to the Schur 

complements that arise in sparse direct solvers, so their applicability extends to fluid, 

structure, and electromagnetic simulations. However, these hierarchical algorithms 

are rather new and highly optimized implementations do not exist at the moment. A 

highly optimized distributed memory GPU implementation is needed to extract the 

potential parallelism of these methods. 

 

 

 

1. Basic Information 

(1) Collaborating JHPCN Centers  

The University of Tokyo 

Information Technology Center 

 

Tokyo Institute of Technology 

Global Scientific Information and 

Computing Center 

 

Hokkaido University 

Information Initiative Center 

 

Kyoto University 

Academic Center for Computing and Media 

Studies 

 

(2) Research Areas 

☑ Very large-scale numerical computation 

 Very large-scale data processing 

 Very large capacity network technology 

 Very large-scale information systems 

(3) Roles of Project Members 

Rio Yokota (Tokyo Institute of Technology) 

Low-rank approximation using FMM and 

its GPU-MPI implementation 

 

Ichitaro Yamazaki (University of 

Tennessee) 

Development of distributed memory 

runtime –ParSEC and blocked BLAS 

library for GPU –block MAGMA 

 

Akihiro Ida (University of Tokyo) 

Feature extension of hybrid MPI/OpenMP 

H-matrix code –HACApK, and its 

integration with ParSEC and block 

MAGMA 

 

Takeshi Iwashita (Hokkaido University) 

Application of HACApK to boundary 

integral solvers for electromagnetics, and 

optimization of H-matrix-vector product 

 

Takayuki Aoki (Tokyo Institute of 

Technology) 

Application of HACApK to Poisson solvers 

for multiphase flows 

 

Satoshi Oshima (University of Tokyo) 

GPU implementation of HACApK and 
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integration with MAGMA 

Taku Hiraishi (Kyoto University) 

Dynamic load-balancing of HACApK 

 

Kengo Nakajima (University of Tokyo) 

Extend capability of HACApK within the 

ppOpen-HPC framework. 

 

Jack Dongarra (University of Tennessee) 

Development of distributed memory runtime 

–ParSEC and blocked BLAS library for GPU 

–block MAGMA 

 

2. Purpose and Significance of the Research 

 The present research aims to develop a high 

performance implementation of hierarchical 

low-rank approximations on distributed 

memory and GPU systems. The distributed 

memory implementation and GPU 

implementation will be performed in a 

incremental fashion by starting with 

matrix-vector multiplication, then matrix 

factorization, and finally eigenvalue solvers. 

Even the matrix-vector product has important 

applications in boundary integral solvers for 

electromagnetics, so validation using real 

applications can be performed every step of the 

way. 

 

2.1 Extension of H-matrices 

 Distributed memory implementation of LU 

factorization of H-matrices suffers from large 

amount of communication and is not currently 

implemented in HACApK. In the present work, 

we switch to the non-hierarchical block 

low-rank (BLR) structure and simplify the data 

dependency during the LU factorization in 

order to reduce the amount of communication. 

In H-matrices, the dense matrix is 

hierarchically subdivided into smaller and 

smaller blocks, and each of these blocks must be 

compressed using low-rank approximation 

methods. HACApK uses adaptive cross 

approximation (ACA) for the low-rank 

approximation. ACA has a small number of 

arithmetic operations but is known to fail in 

cases with low local contrast. In the current 

study, we will use the fast multipole method 

(FMM) instead of ACA to perform the 

compression more robustly without loss of 

performance. 

 

2.2 Implementing H-matrices on next 

generation supercomputers 

 Modern supercomputers have CPUs with tens 

of cores, but future CPUs are anticipated to 

have hundreds or even thousands of cores. 

HACApK is optimized for multicore CPU, but 

requires modifications to extract the full 

potential of many core processors. To this end, 

we need to rethink parallel algorithms by 

considering hardware characteristics. 

 

3. Significance as a JHPCN Joint Research 

Project 

 The significance of conducting the current 

research joint with the team from the 

University of Tennessee is the integration of the 

tools that are being developed there. The 

current work aims to extend the capability of 

HACApK, which is the only open source hybrid 

OpenMP/MPI parallel H-matrix library. There 

are few efforts to use HPC technology in 

H-matrix codes, let alone efforts to develop 

highly optimized implementations on 

many-core processors such as GPUs and Intel 

Xeon Phis. The current project integrates other 

popular libraries such as MAGMA, ParSEC, 

Tascell, and exaFMM. The developer of each of 

these libraries is a member of this project, so 
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the integration between these libraries can be 

done effectively. The focus is on ease of code 

development, while we also aim to solve 

problems that could not be previously tackled. 

 

4. Outline of the Research Achievements up 

to FY 2015 

 The current project started from FY 2016. 

 

5. Details of FY 2016 Research 

Achievements  

5.1  Research Achievements of First Half of 

FY 2016 

 Our goal is to have a GPU implementation of 

our H-matrix code, and extend it to LU 

factorizations and use it as a preconditioner 

[9]. To this end, understanding the relation 

between H-matrices and FMM is critical, 

because FMM is known to perform well on 

GPUs and have recently possessed the ability 

to be used not only as a mat-vec, but also a 

preconditioner [1,30]. Therefore, during the 

first half of FY2016 we focused on 

understanding the relation between 

H-matrices and FMM, because this is the 

shortest path to achieving our objective. 

 FMM and H-matrices lie at the opposite 

ends of the spectrum of hierarchical low-rank 

approximation methods [5], which are shown 

in Figure 1. ``Compressed operators” in 

Figure 1 represents a method which 

recompresses the FMM translation matrix by 

using SVD. There exists a compute-memory 

tradeoff between FMM and H-matrices [17]. 

 

Figure 1. Compute-memory tradeoff in 

hierarchical low-rank approximation method 

 

Figure 2  Calculation time for a single 

matrix-vector multiplication including setup 

time for the Green’s function matrix of a 2-D 

Laplace, 3-D Laplace, and 3-D Helmholtz 

equation 

 

This method was originally designed to 

accelerate the translation of multipole 

expansion in FMM. When this technique is 

used the FMM becomes very similar to a 

H2-matrix or HSS matrix. Therefore, we 

perform a direct comparison between FMM 

and HSS. 

  We use the 2-D Laplace, 3-D Laplace, and 

3-D Helmholtz equations as the problem of 

interest, and generate the matrices from the 

Green’s function. A single core of a  12 core 

Ivy Bridge (E5-2695v2) is used for the 

calculations. In Figure 2, we show the 

calculation time for the FMM and HSS. The 

x-axis is the size of the matrix, and the y-axis 

is the calculation time in seconds. FMM has a 

constant overhead so for small N it does not 

show O(N) behavior. For sufficiently large N, 

both FMM and HSS show O(N) behavior. It 

can be seen that FMM is about 1000 times 

faster than HSS [17]. This is due to the large 

calculation cost of the algebraic compression 

that HSS does, whereas the FMM does not. 
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Figure 3. Domain decomposition of H-matrix 

 

Figure 4. Parallel speedup of H-matrix 

 

Another important aspect of our work in the 

first half of FY2016 is the load-balancing of 

the distributed memory implementation [2]. 

The decomposition of a hierarchical matrix is 

shown in Figure 4. In the present work, we 

improve the load-balance by introducing a 

dynamic load-balancing scheme that predicts 

the ranks of each block [28]. We use a test 

problem that gave poor load-balance for a 

static load-balancing scheme, to validate our 

new dynamic load-balancing scheme [7]. We 

use dynamic task scheduling in OpenMP. The 

solid line in Figure 5 is the result when we 

use dynamic load-balancing. We can see that 

all threads are calculating similar number of 

elements.  

 

Figure 5. Performance of BiCGSTAB using 

HACApK for the mat-vec on multiple GPUs. 

 

5.2  Research Achievements of Second Half of 

FY 2016 

In the second half of FY2016 we focused on 

our final objectives of a) implementing 

HACApK on GPU and b) extending HACApK 

to LU decomposition.  

 The GPU implementation of HACApK was 

achieved through the use of MAGMA. Since 

one of the developers of MAGMA – Ichitaro 

Yamazaki was a collaborator in this project, 

the integration of MAGMA with HACApK 

was done in a very short amount of time. We 

were therefore able to have a multi-GPU 

version by the end of FY2016. 

 The performance of HACApK on multi-GPU 

is shown in Figure 3, where ``Comp” is the 

computational kernels, ``Copy” is the CUDA 

memory copy time, ``Comm” is the MPI 

communication. The MPI communication 

time eventually becomes the bottleneck 

because the mat-vec computation part takes 

very little time on the GPU. 

 We have also extended HACApK to run on 

the Xeon Phi Knights Landing [23]. This port 

is more straightforward than that of the GPU, 

since it is merely changing the BLAS library 

to the AVX512 optimized version and 

compiling for the Knights Landing. 
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(a) H-matrix           (b) BLR 

Figure 6. Contrast between a H-matrix and 

BLR matrix structure. The dark red boxes are 

dense matrices, while the light red boxes are 

low-rank matrices. BLR is a non-hierarhical 

block low rank matrix. 

 

 We have successfully extended HACApK to 

perform LU decomposition on H-matrices. We 

chose to use the BLR format, which is a 

non-hierarchical version of the block low-rank 

matrices. This is due to the simpler data 

dependency of BLR compared to H-matrices 

when performing the LU decomposition. BLR 

still uses low-rank approximation for the 

off-diagonal blocks, and therefore does much 

less arithmetic operations compared to the 

dense matrices. Our initial experiments 

showed that, the data-dependency of the 

hierarchical matrix [6] greatly decreased the 

available concurrency during the LU 

decomposition. This is why we chose to use 

the non-hierarchical BLR format, which is 

more parallel. 

 In order to assess the benefit of using 

HACApK for LU decomposition, we compared 

the LU decomposition in HACApK with 

LAPACK and achieved up to 6 times speed up. 

This proves that our approach of first 

compressing the dense matrix into a 

H-matrix form has a great benefit over 

performing the LU decomposition on the 

dense matrix directly. 

 

6. Progress of FY 2016 and Future 

Prospects   

6.1  Progress of First Half of FY 2016 

The progress of the first half of FY 2016 can 

be summarized as follows: 

 Analyzed the relation between the 

analytical (matrix-free) FMM and the 

algebraic H/H2/HSS-matrix 

 Quantified the compute-memory 

tradeoff between FMM and 

H-matrices 

 Studied the communication properties 

of the domain decomposition of 

hierarchical matrix structures 

 Developed a dynamic load-balancing 

scheme for hierarchical matrices 

6.2  Progress of Second Half of FY 2016 

The progress of the second half of FY 2016 

can be summarized as follows: 

 Developed the first GPU 

implementation of a H-matrix code 

 Achieved 8x speed up on a K40 GPU 

over a 20 core Haswell GPU 

 Extended the GPU H-matrix code to 

handle multiple GPUs 

 Achieved speed up on up to 15 GPUs 

 Extended HACApK to handle LU 

decomposition of H-matrices 

 Achieved 6x speedup over LAPACK 

6.3  Future Prospects 

 For improving the scalability of the 

distributed memory H-matrix codes, we are 

considering the possibility of importing 

various techniques from FMM. We have 

studies the communication patterns of FMM 

extensively and have constructed a 

performance model that predicts the behavior 

on the largest supercomputers such as Mira, 

Titan, and Shaheen [10]. This performance 
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model was used to construct an 

asymptotically superior communication 

scheme for FMM [4]. The communication 

pattern of H-matrices are identical to FMM so 

these techniques should be directly applicable 

to these algebraic variants of FMM. We have 

also investigated the properties of 

data-locality of FMM [21] and its 

performance portability [27]. These findings 

can also be transferred to HACApK in FY 

2017 since the project has been renewed. 

 The lack of straightforward parallelism in the 

LU decomposition of H-matrices could possibly 

be circumvented by the use of task-based 

parallelism. We have been working on efficient 

use of task-based parallelism [29], and 

techniques to increase its robustness [13]. 

 Finally, we have been looking into the use of 

H-matrices in both the convectional 

applications such as electromagnetic boundary 

integral problems [3][8], and also 

non-traditional applications such as long-range 

force calculation in Monte Carlo methods 

[16][20][22] and molecular dynamics 

simulations [19][25]. 

 A more recent effort has been to extend our 

work on hierarchical low-rank approximation to 

machine learning [11]. It is well known that 

machine learning kernels require very low 

accuracy. This is why NVIDIA is developing 

16-bit arithmetic units, while Google goes 

further and uses 8-bit arithmetic units in their 

tensor processing unit (TPU). However, the 

matrix-matrix multiplication is done exactly 

with the O(N^3) dense matrix kernels in the 

current implementation of NVIDIA and 

Nervana (now Intels) machine learning 

libraries. H-matrices can approximate the 

matrix-matrix multiplication in O(Nlog2N) time 

by sacrificing the accuracy. Therefore, it is a 

perfect match for this application which 

requires only 8-bit arithmetic accuracy. Since 

H-matrices become exponentially faster as the 

required accuracy decreases, there will be a 

large benefit if these techniques can be used for 

machine learning kernels. 
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