jh130003-MD01

次世代ペタスケール CFD のアルゴリズム研究

佐々木大輔 (金沢工業大学)

将来の更なる計算機性能の向上を念頭に、等方直交格子をベースとする次世代 CFD ア ルゴリズムを構築する研究を進めている.等方直交格子はその単純性から格子生成を極 めて高速に行え、高次精度解法の導入も容易である. これら利点は大規模計算で更に強 化されることが期待される一方、大規模な非定常計算を大規模並列計算機上で効率的に 行うためには、並列性能を向上させることが不可欠である。本研究では、これまで開発 してきた等方直交格子をベースとする計算手法の実用化例として、自動車周りの解析例 を示す.また,現在開発を進めている多数移動物体解析手法の開発状況を示す.加えて、 並列性能の向上につながるロードバランスの改善に向けて計算時間及び通信時間に関す るインバランスの調査結果を示す.

研究の目的と意義

近年, 京を初めとする次世代高性能計算機を活 用したシミュレーション技術に対する産業界の期 待が大きくなっており, 革新的な製品開発のブレ ークスルーにつながることが期待されている.高 性能計算機の性能を十分に活用するためには、そ の能力を最大限に活かす計算アルゴリズムを構築 することが必要である. そのためには、ペタフロ ップス級流体計算を可能とする流体ソルバのアル ゴリズム開発と,次世代高性能並列計算機や大規 模ベクトル計算基盤におけるソルバの高効率実行 を可能にする超並列化技術およびベクトル化技術 の研究開発に取り組む必要がある.

本研究では、直交格子法ベースの計算手法であ る Building-Cube 法(BCM)の計算効率(ベクト ル化・並列化)の向上を目的とした研究を実施し, 大規模計算機上での実用性の向上を図る. 更に、 直交格子法自体の計算精度を向上させ、流体計算 の信頼性向上を目的とした研究を進める.

多くの CFD 研究では、現行アルゴリズムの高度 化・複雑化により大規模計算を目指しているのに 対し,本研究では、ペタスケール計算機の能力を 活かすためにアルゴリズムの単純さを強化して, CFD およびその応用に革新性をもたらすことを狙 ったものである.現在のアルゴリズムを単純に拡 張しただけでは超大規模並列環境を効率的に使用 することは不可能であるため、計算機科学の分野 イバー・名大・情報基盤)

との密な連携による超大規模並列環境下における 超並列アルゴリズム開発が不可欠である.また, 超並列アルゴリズム開発に加えて、 大規模なデー タの取り扱いを可能にするデータ圧縮法や遠隔可 視化法等の研究も共同で実施する必要がある.こ れらの取り組みにより,従来は計算機能力の限界 により制限されていた様々な流体問題への挑戦を 可能にするとともに、シミュレーション技術の高 度化を通じて航空機をはじめとする流体機械の高 性能化と環境適合化に資することが可能となる.

当拠点公募型共同研究として実施した意義 (1) 共同研究を実施した拠点名および役割分担

本共同研究は、金沢工業大学・東北大学・東海 大学·名古屋大学·宇宙航空研究開発機構 (JAXA) と共同して研究を実施し, 東北大学及び名古屋大 学の計算機設備を利用した.

研究内容と研究機関の役割分担は以下の通りで ある.

①流体計算のアルゴリズム開発 (金沢工大,東北 大・工, 東京農工大)

②応用工学問題への適用 (金沢工大,東北大・工, 東海大, JAXA)

③大容量のオンチップキャッシュを考慮したベク トル化技術(東北大・サイバー)

④ペタスケール向けの超並列化技術(東北大・サ

学際大規模情報基盤共同利用・共同研究拠点 平成25年度共同研究 最終報告書 2014年5月

(2) 共同研究分野

超大規数値計算系応用分野・超大規模情報シス テム関連研究分野

(3) 当公募型共同研究ならではという事項など

ペタフロップス級流体計算を可能とする流体ソ ルバのアルゴリズム構築のためには,大規模ベク トル計算機や超並列計算機環境による評価が必須 であり,当公募型共同研究による計算機環境が必 要不可欠である.並列性能の向上のために流体解 析手法や音響伝播解析手法を改良するためにも, 本枠組みは非常に有効である.また,複数拠点を 使うことで,スカラー型及びベクトル型計算機に 対応したアプリケーションの開発と,ネットワー クを介した大規模データのハンドリング技術の考 案を行うことが可能である.

3. 研究成果の詳細と当初計画の達成状況

(1) 研究成果の詳細について

BCM による自動車空力解析

自動車開発の現場では, 商用の汎用熱流体解析 コードの導入により、ここ 10~20 年で適用が急速 に進んできているが、その計算格子を品質良く作 成する手段には依然として多くの問題を抱えてお り、次世代解析手法に期待が寄せられている.例 として図 1 に自動車の空力解析で使用される CAD データを示す. 図 1(a)に示す通り, CFD の ために供されるデータは詳細な形状から構成され ており,中にはワイヤーやボルト・ナットといっ たものまで含まれる. さらに通常は、十分に整合 が取れたデータを使用できる機会はほとんど無く, 不整合を修正するための事前の準備作業が必要と なる. 図 1(b)は CAD データに不整合が存在する 箇所を示しており、赤線はギャップがある辺を、 青線は多重に接続された辺を表している. CFD の 計算格子を作成する際にはこれらをすべて修正し ていくことになるが、この例では全体で 1,000 か 所を超える隙間・重なりがデータ中に存在し、す べてを手作業で直すには数週間~数か月、商用ソ フトを用いた専任者による修正技術を駆使しても

数日を要する. さらに今後計算機の発展に伴って 計算できる空間解像度が向上すると, 修正形状の 表面解像度も向上させる必要があり, この作業は より困難なものとなる. このため, 近い将来さら に CFD 作業者の負担が増えることが懸念され, この事前準備作業にかかる負担が工業分野での CFD の活用を妨げる要因の一つとなっている.

本研究では, BCM 直交格子による埋め込み境界 法(Immersed Boundary Method, IBM)をベー スとした新しい計算手法を導入し,事前の形状準 備作業なしに'汚い'形状データに対して CFD が実 行可能であることを確かめ,自動車 CAD データ に対して車体空力解析を行うことを目指して研究 を進めている.この時,並列計算環境を用いたプ ログラムチューニングをあわせて実施し,将来の 産業界での使用を念頭においたソフトウェア開発 を行っている.

図 2(a)に、計算に使用した計算格子の図を示す. Cube 数は 87.558, Cell 数は 151.300.224, 最小 格子幅は 4.88[mm]とし, Re 数は×10⁵, 時間刻み 1.0×10⁻⁵[s], 解析時間 0.5[s]の条件で解析を行った. 計算には名古屋大学情報基盤センター所有のスー パーコンピュータシステム HX600 を使用し,1ノ ードあたり CPU が Opteron 8380(2.5GHz) Quad Core×4, インターコネクトが InfiniBand DDR (2GB/s) ×4 のクラスタ環境であり, MPI 並列で 1024コアを使用した. 総メモリ使用量は約440GB, 計算時間は IBM の準備にかかる処理時間が約 10 分程度, 流体の計算時間が約26時間であった. 本 研究ではデータの大きな欠落がないことを確かめ る作業と、可視化の準備のために面の向きを車体 外側に揃える作業のみを行い、おおよそ約1時間 ですべての準備作業を完了している. これは形状 CAD データを受領してから最初の解析結果を受 け取るまで、最短で1日程度で結果が得られるこ とを意味しており、これまで同様な結果を得るの に1週間以上を要していた実製品開発の現場にお いては、特に大きな意味を持つ.

図 2(b)に解析によって得られた流れ場の可視化 結果(速度分布)を示す.表面要素の整合が取れ ていない箇所でも計算が破綻することはなく,ロ バストな解が得られていることが確認できる.こ れにより,本研究で提案した手法[Onishi, 2013] により形状間のギャップ・オーバラップならびに 厚みの無い要素が取り扱い可能になると,格子生 成を困難にさせている要因がほぼすべて解消でき, 短時間でロバストな数値解が得られることを示す ことができた.

(a) 形状概観

図1 自動車実車 CAD データの例

(a) 計算格子図図 2 自動車空力解析の例(続く)

(b) 流れ場の計算結果例図 2 自動車空力解析の例

LEE コードの並列性能向上に向けた基礎研究

航空機の騒音低減を目的として,圧縮性オイラ 一方程式を音波成分に対して線形化した線形オイ ラー方程式 (Linearized Euler Equation, LEE)を用い た騒音の伝播解析法が注目されており,軸対称エ ンジン形状からの騒音解析に用いられている. LEE による解析は,解析対象が一様な流れ場の領 域に限定されず,物体近傍での回折や反射も取り 入れた騒音の予測に適している.直交格子法を用 いた音響伝播解析では,階段状近似による影響を できるだけ小さくするために,物体近傍に細かい 格子を必要とすること,また高周波領域まで解像 するためには細かい格子が要求されることから, 計算格子数が大規模になってしまう.効率よく非 定常解を得るためには,大規模並列計算機上で並 列解析を実施することが必要である.

BCMによる計算格子の生成は、図3(a)のように、 計算領域を Cube と呼ばれる 2ⁿ 倍の大きさの違い を持つ正方形領域に分割し、次に、Cube を図3(b) のように各軸方向同数の格子点(Cell)で分割する. また、それぞれの Cube は隣り合う Cube と重なり 合った overlap Cell を3つ持っており、overlap Cell に物理量を補間することで隣り合う Cube と情報 交換を行いながら計算を進める.図4に LEE ソル バの計算アルゴリズムを示す.計算の初期で計算 格子や物体形状データを入力し、前処理を行う. 本研究では Runge-Kutta 法により時間積分を行う. BCM の計算格子は、すべての Cube が同数の Cell を含んでいるので、並列計算の際に負荷の偏りが

学際大規模情報基盤共同利用·共同研究拠点 平成 25 年度共同研究 最終報告書 2014 年 5 月

なく並列化効率に優れているはずであるが,実際 には境界埋め込み法の導入による物体近傍の処理 や物理量を減衰させる緩衝領域の設定により,計 算負荷の偏りが存在している.本研究では,計算 負荷のインバランスを調査し,その改善を図る.

図3 ブロック配置及び Cube 内 Cell 分割

図4 計算アルゴリズム

3.2.1 物体無しでのインバランス評価

物体や緩衝領域の存在による計算や通信のイン バランスを測定するため,最初に物体の無い場合 での測定を行った(図 5). Cube 数は 1436, 1Cube 当たりの分割数を 16³とする.また,100 ステッ プ計算を行い,計算のメインルーチンとプロセス 間の情報通信の時間を計測する.名古屋大学の Fujitsu CX400 の 128CPU コアを使用し,フラッ ト MPI での計測結果を図 6 に示す.図 6 は,横軸 が計算機番号であり,縦軸(左)に経過時間(計 算負荷),縦軸(右)に通信時間を示す. Cube数 が128で割り切れないため,12個のCubeを担当 するプロセス(1~28)と,11個を担当するプロ セス(29~)とに分けられる.そのため,12個の Cubeを受け持つプロセスの計算時間が増えてい るが,一般に計算時間の偏りは少ない.一方,通 信時間はばらつきを見せている.ただし,今回の 例では,計算時間の方が通信時間に比べて100倍 程度大きい.従って,物体が存在せず,緩衝領域 も存在しない場合は,計算負荷のインバランスが ほとんど生じないことが確認できた.

図5 計算格子(物体無し)

図6 計算時間・通信時間測定結果(物体無し)

3.2.2 物体ありでのインバランス評価

実際の音響伝播解析を模擬するため、解析空間 中に物体を配置すると共に緩衝領域を設置して物 体なしの場合と同様の計測を行った. Cube 数, Cell 分割数を変更した 3 ケースの設定条件を表 1 に示す. なお、測定に当たり、領域分割の相違に よる変化を確認するため、空間充填曲線の一種で ある Z ordering(Z) と 通信 面積最小を図る METIS(M)による分割の比較を行う.表 2 に計算 時間の比較,表3に通信時間の比較を行う.また, 各ケースにおけるプロセス毎の測定結果を図7に 示す.

Case1~Case3を通じて、計算時間・通信時間 共にZorderingとMETISによる領域分割でのイ ンバランスの差は少ないことが分かる. Case1 で は、1 プロセスに割り当てられる Cube は 11 個程 度と少なく、計算時間に対する Cube 間のインバ ランス(最大/最小比)は 1.5 倍程度と大きい. この場合,通信時間の占める割合も少ないため, 計算負荷を考慮して均等なロードバランスを実現 することが望ましい. Case2 では, Case1 に対し Cube 数が6倍程度となっているため、1プロセス 当たりの Cube 数が 60 近くとなっている. この場 合,計算時間のインバランスは比較的小さい.そ の一方,通信時間の占める割合も大きく無視でき ないため、通信時間のインバランス解消あるいは 通信時間の隠蔽が必要である.最後に, Case3 で は、Case1 と同等の Cube 数であるが Cell 分割数 が各軸方向に2倍となっており、Cube内のCell 密度が増大している. Case3の結果は Case1 とほ ぼ同等であり,計算時間に対するインバランスが 大きく、並列性能向上のためには対策が必要であ る.

	Cube 数	Cell 分割数	総 Cell 数		
Case 1	1,436	16^{3}	$6\mathrm{M}$		
Case 2	7,876	16^{3}	32M		
Case 3	1,268	32^{3}	42M		

表1 設定条件

表2 計算時間(sec)の比較

		合計	最大	最小	比
Case 1	Ζ	1221	11.348	7.049	1.61
	Μ	1223	11.470	6.269	1.83
Case 2	Ζ	5970	50.528	39.792	1.27
	Μ	5972	50.881	38.736	1.31
Case 3	Ζ	7817	70.815	47.132	1.50
	Μ	7928	70.377	41.633	1.69

表 3	通信	時間(sec)の.	比較

		合計	最大	最小	比
Case 1	Ζ	3.89	0.069	0.009	7.67
	Μ	4.63	0.085	0.001	85.00
Case 2	Ζ	1.27	9.698	0.024	7.71
	Μ	1.31	8.403	0.021	10.71
Case 3	Ζ	1.50	3.086	0.009	6.22
	Μ	1.69	3.437	0.008	7.50

(b) Case 2 (左: Zordering, 右: METIS)

(c) Case 3 (左: Zordering, 右: METIS)
図7 計算時間・通信時間の測定結果

多数移動物体解析用の圧縮性大規模 LES の開発

実際の工学製品を取り巻く流体現象には,複数 の相対移動する境界を含む例が多数ある.具体的 には,冷却用・強制排気用のシュラウド(ケーシ ング)とファンの干渉,走行中の自動車に対する タイヤ周りの流れ,車両のトンネル突入時の流れ など,多数の例がある.これらの中にも,形状の 単純さや相対運動の扱いの容易さから,既存の流 体解析技術で十分に対応が可能なものも多くある. しかしながら,相対移動する物体を含む流れ場の 解析は,一般的に複雑化する場合が多い.それは, 計算格子の移動と流体解析を同時に扱うことによ るアルゴリズムの複雑化と低効率化に起因すると ころが大きい.そこで本研究では次世代相対移動 物体解析用のアルゴリズムとして,等間隔直交格 子を基準とした解析手法を開発している.等間隔 直交格子の長所は格子生成が簡便かつ高速である ことで,その一方で短所は計算が大規模化しやす いことである.短所を次世代大型計算機性能で補 えばこの手法は非常に有効となる.本研究では物 体形状をレベルセット関数で表現し,物体の壁面 境界条件をゴーストセル法によって与えている.

また,本研究の支配方程式は圧縮性 Navier-Stokes 方程式であり,乱流と衝撃波の両 方をクリアに解像するためのSkew-symmetric型 とMUSCL型のスイッチングスキームを採用して いる.この手法の妥当性はJournal of Applied Mathematics に投稿した論文で既に述べている. 図8にはその論文の解析を応用して得られた3つ の円柱が超音速ですれ違う場合に,周囲で生じる 密度分布を示している.図8の上下に位置する円 柱はそれぞれ図8を縦断するように移動しており, その後流を中央の円柱が横切っている非定常流れ 場である.本手法ではこのような複数移動物体の 流れ場も安定かつ高精度に解析が実施でき,現在 3次元解析により多数の相対移動する球周りの解 析を準備中である.

図8 超音速ですれ違う3円柱周りの瞬時密度場

また,相対移動する問題の例のひとつにシュラ ウド(ケーシング)付ファンが挙げられるが,本 研究ではそちらの解析も現在実施している.図9 に示したのはテストケースとして実施した4枚の ブレードを有するラジアルファン内部の流体解析 例である.内部のブレードのみを設定した周波数 で回転させており,内側の円形の境界から流れを 吸い込んで外部に吐きだす様子が観察され,定性 的には良好な結果が確認された.現在は実験デー タとの定量的な比較を実施している.

図9 ラジアルファン内部の瞬時渦渡場

(2) 当初計画の達成状況について

今年度の計画の一つは、応用工学問題への適用 を通して、本計算手法の有効性を示すことであっ た.今年度、自動車の空力解析を実施し、その有 効性を示すことができた.また、現在開発を進め ている多数移動物体解析用流体解析手法の有効性 の検証が進められており、今後の3次元化により 実用性が大いに期待される.一方、ペタスケール 向けの超並列化技術に関しては、音響解析に用い る LEE コードの並列化がようやく完成したとこ ろであり、超並列化は未達の状況にある.今後、 早急に並列性能を調査し、超並列化に向けた技術 開発に取り組む.

4. 今後の展望

等間隔直交格子法に基づいた相対移動物体解析 への応用は大規模解析との相性も良く,次世代解 析アルゴリズムとしては非常に有望である.現在 は三次元化と壁モデルを活用した LES への拡張, さらに二相流への拡張も睨んでおり,等間隔直交 格子法の長所の一つである迅速な手法開発も生か されていると言えよう.今後はさらに高速なアル ゴリズムの検討と,定量的な比較検証を進めてよ り学術的に高い論文誌への投稿と,産学連携研究 へのさらなる適用を目指す.

また,開発した音響解析ソルバの大規模並列化 計算を実施して並列性能を調査し,超並列化に向 けた技術開発を進める.その結果,大規模な空力・ 音響連成解析が可能となり,航空機周りの騒音解 析の実用化が見えてくる.

5. 研究成果リスト

(1) 学術論文(投稿中のものは「投稿中」と明記) Shun Takahashi, Taku Nonomura, Kota Fukuda, "A Numerical Scheme Based on an Immersed Boundary Method for Compressible Turbulent Flows with Shocks: Application to Two-Dimensional Flows around Cylinders," Journal of Applied Mathematics, Article ID 252478, 2014.

<u>Yuma Fukushima</u>, <u>Daisuke Sasaki</u>, <u>Kazuhiro</u> <u>Nakahashi</u>, "Cartesian Mesh Linearized Euler Solver for AeroAcoustic Problems around Complex Geometry," *Journal of Aircraft* (投稿 中)

(2) 国際会議プロシーディングス

<u>Yuma Fukushima, Takashi Misaka, Shigeru</u> <u>Obayashi</u>, Shinkyu Jeong, <u>Daisuke Sasaki</u>, <u>Kazuhiro Nakahashi</u>, "CFD-CAA Coupled Computation of Fan Noise Propagation from Engine Nacelle Based on Cartesian Mesh Method," AIAA 2013-2020, 19th AIAA/CEAS Aeroacoustics Conference, Berlin, Germany, 2013. <u>Keiji Onishi</u>, <u>Shigeru Obayashi</u>, <u>Kazuhiro</u> <u>Nakahashi</u>, Makoto Tsubokura, "Use of the Immersed Boundary Method within the Building Cube Method and its Application to Real Vehicle CAD Data," AIAA-2013-2713, 21st AIAA Computational Fluid Dynamics Conference, San Diego, USA, 2013.

<u>Ryotaro Sakai, Shigeru Obayashi</u>, Yuichi Matsuo, <u>Kazuhiro Nakahashi</u>, "Practical Large-Eddy Simulation for Complex Turbulent Flowfield with Adaptive Cartesian Mesh and Data Compression Technique," AIAA Paper 2013-2862, 21st AIAA Computational Fluid Dynamics Conference, San Diego, USA, 2013.

<u>Yuma Fukushima, Takashi Misaka, Shigeru</u> <u>Obayashi, Daisuke Sasaki, Kazuhiro</u> <u>Nakahashi</u>, "The Numerical Analysis of Forward Fan Noise Shielding Effect on the Over-the-Wing Nacelle Configuration," AIAA Paper 2014-0720, 52nd AIAA Aerospace Science Meeting, National Harbor, Maryland, 15 January 2014.

(3) 国際会議発表

<u>Keiji Onishi</u>, Makoto Tsubokura, "Enhancement of Wall Boundary Condition for Dirty CAD on Building Cube Method based Immersed Boundary," Tenth International Conference on Flow Dynamics, Sendai, Japan, 2013.

<u>Ryotaro Sakai, Shigeru Obayashi, Daisuke</u> <u>Sasaki, Kazuhiro Nakahashi</u>, "Wavelet-Based Data Compression Technique for Building-Cube Method," Tenth International Conference on Flow Dynamics, Sendai, Japan, 2013.

<u>Yuma Fukushima, Shigeru Obayashi, Daisuke</u> <u>Sasaki, Kazuhiro Nakahashi</u>, "Computation of the Forward Fan Noise Shielding by the Building-Cube Method," Tenth International Conference on Flow Dynamics, Sendai, Japan, 2013. Daisuke Sasaki, Yuya Kojima, Tatsuya Kuroda, Takeshi Akasaka, Masato Okamoto, Koji Shimoyama, <u>Shigeru</u> Obayashi, "Cartesian-based CFD Solver for Low-Reynolds Number Airfoils," Tenth International Conference on Flow Dynamics, Sendai, Japan, 2013.

<u>Kazuhiko Komatsu, Ryusuke Egawa</u>, Hiroyuki Takizawa, Takashi Soga, Akihiro Musa, <u>Hiroaki</u> <u>Kobayashi</u>, "Design of the Next-Generation Vector Architecture for Postpeta-Scale CFD," Tenth International Conference on Flow Dynamics, Sendai, Japan, 2013.

<u>Ryusuke Egawa</u>, "AN HPC REFACTORING CATALOG: GUIDELINES TO BRIDGE THE GAP AMONG HPC SYSTEMS," Legacy HPC Application Migration (LHAM2013), 2013.

<u>Hiroaki Kobayashi</u>, "Early Evaluation of NGV and Feasibility Study of the Next Generation Vector System Architecture for Memory Intensive Applications," NUG XXIV, 2013.

<u>Hiroaki Kobayashi</u>, "Feasibility Study of A Future HPC System for Memory-Intensive Applications," 18th Workshop on Sustained Simulation Performance (WSSP18), Oct. 2013.

<u>Ryusuke Egawa</u>, "Designing an HPC Refactoring Catalog toward the Exa-scale Computing Era," 18th Workshop on Sustained Simulation Performance (WSSP18), Oct. 2013.

<u>Kazuhiko Komatsu</u>, "Performance evaluation of auto-parallelized codes on various supercomputing systems," 18th Workshop on Sustained Simulation Performance (WSSP18), Oct. 2013.

<u>Kazuhiko Komatsu</u>, "Performance Comparison of Auto-parallelized Codes and OpenMP Codes on Various Supercomputing Systems, 19th Workshop on Sustained Simulation Performance(WSSP19), Sendai, Japan, Feb. 2014. <u>Yuma Fukushima</u>, "Numerical Simulation of Noise Propagation around Aircraft Based on Cartesian Mesh Method," Next Generation Transport Aircraft Workshop 2014, Seattle, Washington, 28 March 2014.

(4) 国内会議発表

<u>江川隆輔</u>, "科学技術アプリケーション進化を支える HPC リファクタリングの実現に向けて,"第18回計算工学講演会, 2013 年 6 月.

<u>坂井玲太郎</u>,<u>大林茂</u>,松尾裕一,<u>中橋和博</u>, "Building-Cube Method を用いた実用的な大規模 乱流解析手法の構築",第 45 回流体力学講演会/ 航空宇宙数値シミュレーション技術シンポジウム 2013,船堀,2013 年 7 月.

<u>小松一彦</u>, 佐々木俊英, <u>江川隆輔</u>, 滝沢寛之, <u>小林</u> <u>広明</u>, "マルチプラットフォームにおける最適化手 法の効果に関する一検討," 並列/分散/協調処理に 関するサマーワークショップ(SWoPP2013), 2013 年7月.

<u>大西慶治</u>, 坪倉 誠, "階層型直交格子を用いた大 規模自動車複雑形状空力解析",日本機械学会 2013 年度年次大会, 2013 年 9 月.

高橋俊,野々村拓,福田紘大,"衝撃波・乱流干渉 流れ解析のための埋め込み境界法を用いた数値解 析法",第27回数値流体力学シンポジウム,2013 年12月.

Azmir Ridzuan bin Azlan, <u>Kazuhiko Komatsu</u>, <u>Ryusuke Egawa</u>, Hiroyuki Takizawa, <u>Hiroaki</u> <u>Kobayashi</u>, "OpenMP Parallelization using Compile Log of Automatic Parallelization," 第 12回情報シナジー研究会, 仙台, 2014年2月.