12-NA18

実在地域における建築・都市環境の総合数値予測

大嶋拓也(新潟大学)

概要 本研究の目的は、オープンソースソフトウエアを活用した都市街区レベルの建築・都市環境予測コードの開発、および当該コードを使用した実市街地解析技術の開発、 解析結果の整備である。現在までの達成状況は以下である:(1)オープンソース可視化ソ フトウエア及び可視化ライブラリである ParaView/VTK について、FX10 プラットフォー ムへのポーティングを行った。(2)音響解析コードについて、音響伝搬予測上重要な地 面・建物吸音特性の取扱いの導入および、その入力データとなるリモートセンシングデ ータを用いた実市街地の吸音特性推定技術の開発を行った。(3)音響解析コードの模型実 験との比較による検証を行い、一定の一致を見た。(4) OpenFOAM チューニングにおいて、 5 重対角圧縮形式と行方向圧縮形式の混合形式(準構造格子)による疎行列ベクトル積を 用いた自動チューニングによる OpenFOAM 高速化の可能性を示した。(5) 大規模領域にお ける CFD によって得られたアプローチフローを用いて対象家屋とその周辺街区の CFD を 行うための格子生成ワークフローを確立した。

1. 研究の目的と意義

ヒートアイランド対策、都市道路交通騒音問題な ど、現在の我が国市街地においては解決すべき建 築・都市環境工学的課題が山積している。それら課 題の解決には、現状把握としての環境要素マッピン グ技術、および将来の変化シナリオに対する予測技 術が必要である。そのため、都市環境を構成する個々 の環境要素に対しては、従来から精力的に多くの研 究が行われてきた。例えば、ヒートアイランド対策 という最も具体的かつ喫緊の都市スケール問題解決 に迫られてきた温熱環境分野では、通風性能指標の 全国マップ作成など、本問題に係る研究実績が豊富 であり、我が国の研究レベルは欧米の10年先を行く と言われる。また音響分野においては、都市におけ る主要騒音源たる道路交通騒音源からの音響伝搬モ デルが実街区へ汎用的に適用可能との立場から、日 本音響学会による ASI RTN-Model 2003 といった、モ デル式による街区レベルの道路交通騒音予測手法の 実用化、大規模数値予測手法の活用による道路際遮 音壁の遮音効果予測高精度化などが模索されている。 しかしながら、総合的な環境評価には不可欠と考え られる、それら個々の環境要素を統合した統一的な マッピング、予測、データベース化にかかわる手法 の研究開発は行われていない。それには、現在に至 るまでそれらの研究開発が個々の環境要素ごとに行 われており、各環境要素の予測研究に従事する研究

者間の交流がほとんど行われてこなかった事が挙げ られる。

一方で、国内外における精力的な数値解析技術研 究開発の結果、数値流体解析(CFD)を用いた風・温熱 解析、放射熱解析および数値音響解析といった個々 の環境要素予測手法がいずれも完成の域に達しつつ ある。このことを背景に、概ね2006 年頃から現在ま での僅か数年で、以下の2 点に代表される状況変化 が急速に起こりつつある。

- 総合的環境予測へ関心を拡大する研究者の発生。 これらの研究者に共通する特徴は、各環境要素の 予測手法研究開発において先端的な研究能力及 び実績を有しながら、総合的な環境予測手法への 研究開発の進展を、それら研究実績からの然るべ き延長線として捉えている事である。すなわち、 出自たる研究分野にかかわらず、目指すべき、と 考える方向性が驚く程一致している。
- 数値予測技術を実装したオープンソースソフト ウェア(以下 OSS)の急速な発達。とりわけ、欧 州を中心に急速に開発が進む最新の OSS に共通 する特徴として、最先端の研究レベル実装が論文 発表と同時にそのままオープンソース化されて おり、商用コードをもしのぐ非常に高度な数理お よび物理モデルを実装していること、CFD、音響、 熱放射など多種の物理現象を統合的に連成可能

学際大規模情報基盤共同利用·共同研究拠点 平成 24 年度共同研究 最終報告書 2013 年 5 月

なマルチフィジックス機能を実装していること が挙げられる。

以上のごく近年における状況変化を踏まえ、本研究 課題では、OSS を活用した都市街区レベルでの風・ 温熱・放射・音環境の総合環境予測を行う。

本研究の特色は、複数の環境要素予測を統合化さ れたオープンプラットフォームの下、横断的に実施 する事にある。前述のとおり、これは従前存在しな かった独創的アプローチであり、本研究の新規性の 根幹をなすと考える。これによって、各研究項目に おける研究分野間の相互協力によるシナジー効果的 な研究進展を狙う。また本アプローチから期待され る結果および波及的な意義は以下である。

- 1. 学問的貢献:都市環境問題の解決を図る上で基礎となるデータの集積、閲覧が可能となる。
- 文化的貢献:本データベースは専門家のみなら ず一般に幅広く公開される事から、膨大なデータ からのデータマイニングなど、斬新なアイデアに 基づく新たな事業、研究開発創出の可能性を有す る。
- ワールドワイドなOSS エンジニアリングへの貢献:本研究ではOSS をベースとした開発を行う 性質上、その成果物も必然的にOSS である。研究 分担者は既にOSS 海外発信の実績を有している ことから、本成果も海外発信の予定である。技術 立国日本を支える我が国産業界の研究開発現場 で使用されるエンジニアリングコードが、商用・ OSS を問わず、悲惨なまでに海外独占である現状 を改善する一助となることが期待される。
- 2. 当拠点公募型共同研究として実施した意義
- (1) 共同研究を実施した大学名と研究体制
 東京大学
- (2) 共同研究分野

超大規模数値計算系応用分野

(3) 当公募型共同研究ならではという事項など

異分野の研究者が共同研究を通して協働すること で、あらたな問題解決手法を開拓できる。また、OSS を用いていることからコードや計算ケースを随時公 開しているため、研究の透明性が高く、さらに追試 や類似研究への応用などのリサイクルが著しく容易 であることなどが挙げられる。

- 3. 研究成果の詳細と当初計画の達成状況
- (1)研究成果の詳細について
- 1) ParaView/VTKのFX10への移植

本研究では、可視化用ソフトウェアとして ParaView/VTK を使用する。このソフトウェアは SPARC64 IXfx アーキテクチャを採用する富士通 PRIMEHPC FX10(以下 FX10)上では動作実績がない ため移植作業が必要であった。X11 や OSMesa 等、 ParaView/VTK をコンパイルするために必要となる 小規模なライブラリ群のコンパイルには、ソース コードの変更を最小限に抑えるためにインタラク ティブノードで提供されるオウンコンパイラを使 用し、ParaView/VTK 自体のコンパイルには、より 高速に動作する、ログインノードで提供されるク ロスコンパイラを使用した。富士通コンパイラを GCCと高い互換性で動作させるため、Cコンパイラ には -std=gnu99 -Xg, C++ コンパイラには -std=gnu++98 -Xg オプションを指定した。最適化 オプションには、-Kfast を指定した。また、GCC では有効だが、富士通コンパイラではエラーが発 生する幾つかのコンパイル時オプションを渡さな いようにする変更を、configure スクリプト等を 修正することにより行った。

ParaView/VTKのコンパイル中には、幾つかのソ ースコードジェネレータをコンパイル・実行し、 生成されたソースコードをコンパイルして、最終 的に必要なライブラリや実行ファイルを得る場合 がある。多くはアーキテクチャ非依存のもので、 これらは予めGCCを使用してログインノード上で 動作するParaView/VTKをビルドしておき、それを 参照することでクロスコンパイル時も対応可能で あるが、メモリアラインメントやバイトオーダー など、計算ノードに固有な情報を自動取得するた めのプログラムについてはこの方法では対処でき ない。クロスコンパイルを行う場合、これらの情 報取得プログラムは、アーキテクチャの異なるロ グインノード上で実行されようとするためにエラ ーが発生してしまう。このような場合に対処する ため、execve システムコールのフックツールを作 成した。これは、実行しようとするバイナリの ELF ヘッダを解析し、計算ノード用のバイナリを実行 しようとした場合には、それを自動的にバッチジ ョブに変換し、ジョブ管理システムに投入して実 行結果を得るものである。execve システムコール の呼び出しをフックするためには、LD_PRELOAD 環 境変数に本ツールが提供するライブラリのファイ ル名を指定する。このツールのもとでは、x86 用 のバイナリも SPARC64 IXfx 用のバイナリも、ログ インノードから透過的に実行することが可能とな る。

X11 や OSMesa 等のコンパイルにかかる時間は約 50 分、クロスコンパイル時の参照用に使用する、 x86 版の ParaView/VTK のコンパイルにかかる時間 は約 30 分、ParaView/VTK のクロスコンパイルに かかる時間は約 70 分であった。クロスコンパイル 時には、make -j 16 コマンドを使用し、最大 16 並列で処理を行った。

2) 音響予測への吸音特性の導入

a. 背景

昨年度までに GIS データセットからの実在地域 の形状生成手法確立、および音響解析コードのMPI 並列化を行い、実在地域を対象とした大規模音響 解析への対応が可能となった。しかしながら地 面・建物は音響的に完全反射面として扱っており、 音響伝搬に大きな影響を与えるそれらの吸音特性 の考慮が課題となっていた。その理由としては、 解析コード自体に吸音特性を考慮する機能の実装 が必要であるほか、当該機能への入力データとな る実在地域全体の吸音特性そのものを推定する手 法の開発が必要であったことが挙げられる。した がって今年度は、以下 b.、c.の2 段階に分けて、 当該課題の解決を図った。

b. リモートセンシングデータからの地面吸音 特性推定手法の開発

リモートセンシングデータを用いた、本研究で 求められる屋外音響伝搬問題に適した(地表面の 流れ抵抗や音響インピーダンスに着目した)地表 面判別に関する研究は見られない。そこで、高精 度なリモートセンシングデータであるハイパース ペクトルデータ(図 3.1)を用いた、屋外音響シミ ュレーションに適した地表面種別データ生成手法 について検討した。

本ハイパースペクトルデータから、ASJ RTN-Model 2008[1]を参考に、判別すべき地表面種 別を表 3.1 に示す 6 種類とした。ただし、吸音す る面(表 3.1 の流れ抵抗が 1,250kPa·s/m²以下の種

図 3.1 ハイパースペクトルデータ。色分けは推定 手法におけるトレーニングエリア、赤い枠線は地 表面種別の推定を行ったテストエリア。

表 3.1 地表面種別

Land cover	Flow resistivity	
classification	[kPa∙s/m²]	
Loose soil	75	
Grass	300	
Rice field	300	
Compacted soil	1,250	
Tree	20,000	
Others	20,000	

別)ではないと判定された地表面は全て完全反射 面として1種別にまとめることとした。また、音 響シミュレーションには、建物形状として数値地 図の建物外周線データを用いるため、ハイパース ペクトル画像から建物を識別する必要はない。同 時に、木は葉の下の地面の種別を推定することが 困難であることから、完全反射面とした。

推定手法としては、本研究では MED-SD 法[2]を 用いた。MED-SD 法は教師付き判別手法であるため、 詳細な航空写真と現地調査に基づき、地表面種別 ごとにトレーニングエリアを図 3.1 のように設定 した。そのトレーニングエリアに含まれる画素の スペクトルを抽出し、各地表面種別の教師(平均) スペクトルを算出するためのデータを得た。次に、 得られた教師スペクトルと判別閾値を用いて、図 3.1 の赤枠で囲んだテストエリアの地表面種別の 判別を行った。

図 3.2 テストエリアの地表面種別判別結果

図 3.2 に判別結果を示す。全体的に地表面種別 の性状を把握できていると言える。ただし、木が 草地と、田んぼが柔らかい地面(畑地)と誤判定さ れるケースが多く、また少しではあるが、固い地 面や柔らかい地面がその他の完全反射面と誤判定 されており、それらの解消が今後の課題と言える。 c. 音響解析コードへの吸音特性取扱いに関する 機能の導入

前節で、実在地域の地表面種別が得られたので、 それに対応する吸音特性を考慮した解析を試みた。 解析手法は、Salomons らによる多孔媒質における 音響伝搬の時間領域有限差分解法[3]を踏襲した。 本手法では、吸音特性は流れ抵抗 σ 、ポロシティ Ω 、構造係数 c_s の3パラメータで表される。

本手法の実装の妥当性確認のため、図 3.3 に示 す平坦な吸音性地面による反射問題を 2 次元で解 析し、Salomons らによる理論解[3]と比較した。 $\Omega = 0.3$ および $c_s = 3$ とし、 σ は 100, 1,000, 10,000 [kPa·s/m²]の 3 ケースとした。また比較の ため、図 3.3 の多孔媒質領域を空気で置換し、解 析領域下端にも 20 格子厚の PML 吸収媒質を課した 半自由音場も解析した。

図 3.4 に、各受音点および各流れ抵抗における、 半自由音場における音圧レベルに対する相対音圧 レベルの周波数特性を、理論解と数値解について 示す。およそ 500Hz 以下の周波数で、両者は良く

図 3.4 理論解と差分解法による解の比較(括弧内 は σ [kPa·s/m²] および受音点位置[m])

学際大規模情報基盤共同利用・共同研究拠点 平成24年度共同研究 最終報告書 2013年5月

一致している。さらに、 $x_r = 5[m]$ のケースでは、 流れ抵抗の変化に伴う 600Hz 付近の特性変化を、 1kHz に至るまで良く捉えている。

以上によって実装の妥当性が確認されたので、 前節における地表面類別判定のテストエリアの解 析を行った。前節にて推定された地表面種別に対 し、ASJ RTN-Model 2008 では σ のみが与えられて いる。そのため、 Ω および c_s は、文献[4]におけ る各類型に最も σ の近いケースのものを用い、表 3.2.2 のとおり設定した (case A)。

解析領域高さは 50m (うち地表厚約 8m)、空間離 散化幅は 0.125m とし、解析領域四周および上端に 20 格子厚の PML を課した。音源は、図 3.5 に示す 線音源における半値全幅 1.25m、振幅 1Pa の同相 Gaussian パルスの初期音圧分布とし、受音点は、 同図中 R1-R6 の 6 点(地上高さ 1.5m)とした。時 間離散化幅は 2×10^{-4} s とし、2s までの解析を行っ た。また比較のため、地面及び建物を全て剛とし たケース (case R)、および地面および建物を空気 で置換し、解析領域下端にも 20 格子厚の PML を課 した自由音場のケース (case F)も解析した。

表:	3.2.	2	地表面類別に対応す	るパラ	メータ
----	------	---	-----------	-----	-----

Туре	$\sigma \; [kPa \cdot s/m^2]$	Ω	C_s
Loose soil	75	0.4	2.25
Grass	300	0.5	1.69
Compacted soil	1,250	0.3	1.96
Others	20,000	0.1	3.24

図 3.6 に、音源からの波面が解析領域南北端に 到達する時刻 0.4s における瞬時音圧分布を示す。 地形および建物による反射、回折など複雑な波動 的挙動が見て取れる。

図 3.7 に、各受音点における音圧時間波形のオ クターブバンド分析によって得られた、case R 対 F、case A 対 F、case A 対 R の相対音圧レベルム L_{RF} 、 ΔL_{AF} 、 ΔL_{AR} を示す。音源から建物による遮蔽 が無く田んぼを伝搬する受音点 R1 で、250Hz 帯域 における約 6dB の減衰が見られ、全面剛とした場 合と比較して大きな差である。このことから、吸 音の考慮の必要性が示された。

3) 音響伝搬解析結果の模型実験との比較

a. 背景

ー連の実市街地における音響解析技術の妥当性 検証が必要であるが、検証実験として、暗騒音源

図 3.6 時刻 0.4s における瞬時音圧分布

図3.7 受音点でのオクターブバンド周波数特性

図 3.10 実験結果(横軸)とシミュレーション結果(縦軸)の比較

図 3.8 形状データ

図 3.9 実験用模型

の多数存在するする市街地での実測は困難である。 そこで、縮尺模型実験結果との比較を試みた。

b. 対象地および模型作成

神奈川県横浜市内における一辺 380 mの区域を 対象とした。本対象地域の地形および建物を再現 した形状データを建築物の外周線 GIS データセッ トおよび数値標高・表層モデルデータセットから 作成し(図 3.8)、当該データセットから縮尺 1/100(一辺 3.8m)の実験用模型(図 3.9)および解 析用格子を作成した。なお、模型作成の都合上、 シミュレーションも含めて屋根面は平坦とし、表 面音響特性は全面剛とした。

c. 結果

図 3.10 に、対象地域ほぼ中央に設けた音源によ る、受音点 378 点における実験およびシミュレー ションの相対音圧レベル比較を、散布図で示す。 63Hz および 125Hz の低周波域では全受音点にわた って、また、それ以上の高周波域においては、音 源に近い相対音圧レベルの大きな点では良好な一 致が見られる。しかしながら相対音圧レベルの小 さな領域では、両者の乖離が大きくなった。実験 における空気吸収の影響が考えられ、それを考慮 した再評価が今後の課題である。

4) オープンソース CFD ソフトウエア OpenFOAM の チューニング

OpenFOAM で多くの時間を占める処理の1つは、 連立一次方程式の求解ソルバー部分である。求解 ソルバーは反復解法を利用しているので、主演算 は疎行列 - ベクトル積(Sparse Matrix-vector product, SpMV)である。OpenFOAMで採用している SpMV におけるデータ構造(疎行列形式)は、 COO(Coordinate)形式である。COO形式は、間接参 照が2つのループ構造となる。この2つの間接参 照は、コンパイラ最適化の阻害や高バンド幅要求 が生じ好ましい構造ではない。疎行列の非ゼロ分 布に依存するが、その他の疎行列形式によるSpMV がCOO形式によるSpMVより高速となることが知ら れている。

そこで我々は、COO 形式から、入力される疎行 列の形状を判断した上で適する疎行列形式へ自動 変換し、SpMV を高速化する自動チューニング(AT) 方式を提案した。この AT 方式を、 SSG-AT (Semi-Structured Grid-AT)と呼ぶ。 OpenFOAM では、snappyHexMesh を採用している。 snappyHexMesh は、構造格子に対象物を押し込む ことで周辺に非均質メッシュが生成される。疎行 列構造で snappyHexMesh を考える。構造格子は 5 重対角行列の形状をなすので 5 重対角圧縮形式 (FDS)が最適である。ところが非均質メッシュの観 点では、行方向圧縮形式(CRS)が最適となる場合が ある。この理由から snappyHexMesh において、FDS 形式と CRS 形式の混合形式が高速となる可能性が ある。そこで、FDS と CRS の混合で表現される格 子を準構造格子 (Semi-Structured Grid) と定義 した。

準構造格子の AT 方式の概略は以下のとおりで ある。入力行列の非ゼロ要素の分布を予想するた め、完全な構造格子から、ランダムに非対角要素 に要素を移動する。このとき、構造格子からのズ レの度合いを UNR [%] と定義する。つまり、UNR=0% は構造格子であり、UNR=100%は非構造格子となる。

ここで、対角要素は FDS で、非対角要素は CRS で SpMV をする。この時 UNR に応じて、OpenFOAM の疎行列形式である COO を用いた SpMV より高速と なる UNR の閾値を見積もることができる。

以上の方法を、T2K オープンスパコンで評価した。その結果を、図 3.11 に載せる。図 3.11 では、 UNR が約 78%以下で提案する混合 SpMV 方式が高速 となる。このことから提案する AT 方式が有効とな る可能性があることが検証された。

図 3.11 CRS と FDS の混合による SpMV が高速とな る疎行列のランダム度(UNR)の閾値(T2K オープ ンスパコン)

5) CFD による実市街地における住宅の通風解析

近年、町屋等の伝統的建築物はその歴史的価値 が認められ、保全・再生される傾向にあるが、一 般に室内温熱環境水準が低く、冷暖房に過大なエ ネルギー消費を必要とする。そこで、歴史的価値 を出来る限り損なわずに、室内温熱環境水準を向 上させることを目標とし、通風による自然換気が 利用可能であるか否かについて検証する。

対象は、山に囲まれた低層市街地内に位置する 町屋であり、CFD を用いて通風量、通風経路等を 評価する。本研究で対象とする市街地は四方を山 に囲まれており、その地形によって撹乱された複 雑な気流が流入していると考えられる。したがっ て、べき乗則などを用いて作成された一様方向に 流入する境界条件では、現実の風況と大きく異な る可能性がある。以上の理由より、本研究ではま ず、山岳地帯を含めた大規模領域における CFD を 行い、対象とする市街地へのアプローチフローを 作成する。また、作成したアプローチフローを用 いて、対象家屋とその周辺街区に対して計算を行 うが、この際、対象家屋はその内部にも計算格子 を配置し、実際に開口部の開口パターンなどを変 化させた場合に、室内の気流性状に生じる影響を 検討する。さらに、より効果的に通風換気を行う ためにはどのような改修を行うべきかをケースス テディし、その効果を定量的に評価することを目 標とした。

そのためのFX10上におけるCFD格子生成を試み た際に、格子生成ユーティリティである SnappyHexMesh が Bus error によって強制終了し てしまう状況にあったが、原因はリトルエンディ アン環境下で作成されたバイナリ形式の形状デー タをそのまま用いていたためと判明し、形状デー タをアスキー形式に変換することで解決された。 これによって、実市街地に対するアプローチフロ ー生成および家屋内に対する CFD 解析のための格 子生成ワークフローが確立された(図 3.12)。

参考文献

[1] K. Yamamoto *et al.*, Acoust. Sci. & Tech.,Vol. 31, No. 1, pp. 2-55, 2010.

図 3.12 対象家屋の精細な形状再現格子

[2] K. Oki *et al.*, Int. J. of Remote Sensing,Vol. 27, No. 10, pp. 1993-2002, 2006.

[3] Salomons *et al.*, *Acta Acust. United with Acust.*, Vol. 88, pp. 483-492, 2002.

[4] Wilson *et al.*, *Appl. Acoust.*, Vol. 68, pp. 173-200, 2007.

(2) 当初計画の達成状況について

中間報告からの主な進展としては、上記(1)の3) における音響解析と模型実験結果の比較検証、お よび(1)の5)における CFD のための自動格子生成 ワークフローの確立が挙げられる。以下には、年 度当初計画に対する達成状況を記す。

1) ParaView/VTK の FX10 への移植および音響解析

音響解析コードの実行に必要であった ParaView/VTKのFX10へのポーティングは、本年 度早期に達成された。研究開始時からの課題であ った市街地解析のための形状生成は概ね完成した 段階にあるが、現在も随時小改良は続けている。 本年度の主要な課題であった音響伝搬予測上重要 となる地面及び建物の吸音特性の考慮については、 リモートセンシングデータ(ハイパースペクトル 画像)を用いた実在地域における吸音特性推定技 術の構築、および当該推定結果を用いた音響解析 技術の構築の2段階で実施した。推定手法に細部 の改良の余地はあるものの、概ね妥当な結果が得 られている。さらに、実際の市街地形状を模した 縮尺模型実験との比較により、模型実験実施上の 制約の範囲内において数値解析結果の整合性が確 認された。以上から Paraview/VTK を含めた音響解 析コードの FX10 へのポーティング、市街地形状生 成及び音響解析については、当初計画をほぼ達成 したと言える。

2) OpenFOAM のチューニング

本研究では、OpenFOAM で主演算の 1 つとなる SpMV の AT 方式が提案できた。また、人工的な行 列によりその有効性を確認できた。この点におい ては、当初の計画どおり達成できた。課題として 残された事項として、実用問題、特に SnappyHexMeshを用いて、提案した AT 方式が有効 か検証することがあげられる。

3) CFD による実市街地における住宅の通風解析

対象家屋内の通風計算を行うため、対象家屋の 開口部形状・内壁・間仕切り・階段などを再現し た形状モデルを作成した。これを周辺街区の形状 モデル内に組み込み、格子生成を行った。当初、 FX10上にて格子生成を試みた際に、格子生成ユー ティリティである SnappyHexMesh が Bus error に よって強制終了してしまう状況にあった。原因は リトルエンディアン環境下で作成されたバイナリ 形式の形状データをそのまま用いていたためと判 明し、形状データをアスキー形式に変換すること で対応した。この原因の解明に大幅な時間を費や してしまい、達成状況は FX10上における自動格子 生成のワークフローの確立までに留まっている。

4. 今後の展望

(1) ParaView/VTK の FX10 へのポーティング

本研究において開発された音響解析コードが VTK に依存するため、本ポーティングが必須であ ったが、達成された。今後は ParaView/VTK の最新 版への追従などのメンテナンスが中心となる見込 である。

(2) 音響解析

(1)の本ポーティングが早期に実現したことか ら、研究目的に対して概ね順調な達成状況となっ た。地面の種類分類における木と草地の誤判定に ついては、DSM データを入手することで判別可能 と考えられる。田んぼと柔らかい地面の誤判定は 予測される騒音レベルの点からは現実よりも小さ い騒音レベルが予測される危険側の結果を招く可 能性があるため、今後詳細に検討する必要がある。 固い・柔らかい地面と完全反射面との誤判定は、 上述の危険側の予測結果とならないが、より高精 度のシミュレーションのためには今後検討する必 要がある。また模型実験においては、模型実験独 特の空気吸収、測定時の同期加算における位相変 動などの影響を考慮に入れた分析が必要である。

(3) 0penF0AM のチューニング

本研究により、OpenFOAMのソルバー部分で大き な実行時間を占める SpMV の AT 方式の目途が立っ た。実コードに実装して公開することで、多くの ユーザに高速化のメリットがある。また、既存の AT機能付き数値計算ライブラリを呼び出すことで、 OpenFOAMのソルバーよりも高速化される可能性も ある。今後の展望として、これらのコードの研究 開発を行い、フリーコードとして公開することが あげられる。

(4) CFD による実市街地における住宅の通風解析

FX10上における自動格子生成までの達成となっ ており、今後は生成された格子を用いた室内通風 気流計算および、改修計画の提案とその効果の定 量的評価を行っていく予定である。

5. 研究成果リスト

(1) 学術論文(投稿中のものは「投稿中」と明記)

- <u>T. Oshima</u>, M. Ii, Field measurements on wind effects to propagation of road traffic noise over open and flat ground, Appl. Acoust., 74, 141-149, 2013
- <u>Takuya Oshima</u>, <u>Masashi Imano</u>, Yasuhiro Hiraguri, <u>Yoshikazu Kamoshida</u>, Linearized Euler simulations of sound propagation with wind effects over a reconstructed urban terrain using digital geographic information, Appl. Acoust., (採録決定)
- 廣井昂也、<u>大嶋拓也</u>、騒音・風速2点同時実測による盛土道路周辺の風況及びその音響伝搬への

影響調查、日本建築学会環境系論文集、686、 317-324, 2013

- Yasuhiro Hiraguri, <u>Takuya Oshima</u>, Kazuma Hoshi, Basic investigation on estimation of land cover classification conforming to the ASJ RTN-Model using hyperspectral imaging data, Acoust. Sci. Tech., 2013 (採録決定)
- <u>Takuya Oshima</u>, Yasuhiro Hiraguri, Kazuma Hoshi, Time-domain outdoor acoustic simulation of a real-life area using land cover classification identified by airborne hyperspectral imagery, Acoust. Sci. Tech., 2013 (採録決定)

(2) 国際会議プロシーディングス

- Yosuke Yasuda, Kazutaka Higuchi, Hidehisa Sekine and <u>Takuya Oshima</u>, A basic investigation for prediction of outdoor sound propagation in large area using low-frequency FMBEM: effect of shapes and distribution of objects on computational accuracy and efficiency Proc. Inter-Noise 2012 (New York), 2012
- Yasuhiro Hiraguri, <u>Takuya Oshima</u>, Kazuma Hoshi and <u>Masashi Imano</u>, Case study of land cover classification estimation using hyperspectral imaging data for outdoor acoustic simulations, Proc. Inter-Noise 2012 (New York), 2012
- Satoshi Ito, Satoshi Ohshima, <u>Takahiro</u> <u>Katagiri</u>, SSG-AT: An Auto-tuning Method of Sparse Matrix-vector Multiplicataion for Semi-Structured Grids - An Adaptation to OpenFOAM -, Special Session of Special Session: Auto-Tuning for Multicore and GPU (ATMG), Proceedings of 2012 IEEE 6th International Symposium on Embedded Multicore SoCs (MCSoC2012), 191-197, 2012. DOI 10.1109/MCSoC.2012.26

(3) 国際会議発表

• Satoshi Ito, Satoshi Ohshima, <u>Takahiro</u> <u>Katagiri</u>: Implementation of ppOpen-AT into 学際大規模情報基盤共同利用・共同研究拠点 平成24年度共同研究 最終報告書 2013年5月

Poster)

- (4) 国内会議発表
- 廣井昂也、大嶋拓也、騒音・風速2点同時実測に よる道路交通騒音に及ぼす風の影響の調査、日本 建築学会北陸支部研究報告集、pp. 191-194、2012
- 廣井昂也、大嶋拓也、騒音・風速2点同時実測に よる盛土道路近傍の風況とその音響伝搬への影 環境工学 I、pp. 239-240、2012
- 平栗靖浩、大嶋拓也、星和磨、実在地域における 地表面の吸音特性を考慮した音響数値解析技術 の開発 -ハイパースペクトルデータを用いた地 表面データ生成手法の検討-、日本音響学会講演 論文集(秋季)、1-7-1、2012
- 大嶋拓也、平栗靖浩、星和磨、実在地域における 地表面の吸音特性を考慮した音響数値解析技術 の開発 - 地表面データを用いた時間領域音響数 值解析-、日本音響学会講演論文集(秋季)、1-7-2、 2012
- 小野、酒井、野口、内山、隅田:特色ある地方都 市の街並・建築群の保全・再生への環境工学的ア プローチ(その4)周辺地形の影響を考慮したCFD、 日本建築学会学術講演論文集、2012.9
- 隅田泰章, 酒井孝司, 小野浩己: 伝統的建築群の 風圧係数分布と通風利用効果の検証(その2) 街区モデルの改良と周辺地形の影響を考慮した CFD, 平成 24 年度 日本太陽エネルギー学会 日 本風力エネルギー学会 Korean Solar Energy Society 合同研究発表会, 2012.11, pp. 257-260
- 伊東聰、大島聡史、片桐孝洋:pp0pen-AT におけ る OpenFOAM 高速化の取り組み、第17回計算工 学講演会 予稿集、(発表予定)、2012年
- 今野 雅、オープンソース CFD ツール OpenFOAM(R)の現状およびその可能性、第35回関 西 CAE 懇話会、2012
- <u>今野 雅</u>、OpenFOAM の現状と建築環境予測・設計 支援への応用、日本機械学会第25回計算力学講 演会、2012

- OpenFOAM, Proceedings of VECPAR2012, 2012 (A ・ 大嶋拓也、石塚崇、上條高秀、実在地域を対象と した屋外音響伝搬模型実験・シミュレーション統 合プラットフォームの構築、日本音響学会騒音・ 振動研究会資料、N-2013-11、2013
 - 高村勇介、平栗靖浩,大嶋拓也、藤本一寿、数值 地図の精度が沿道の騒音推計結果に及ぼす影響 -新潟市における測量調査結果-、日本建築学会九 州支部研究報告集、No. 406、2013
- 響調査、日本建築学会大会学術講演梗概集(東海)、 ・ 廣井昂也、大嶋拓也、盛土道路からの道路交通騒 音伝搬に及ぼす風の影響調査 -受音点間隔の影 響-、日本建築学会北陸支部研究報告集、2013(投 稿中)
 - (5) その他(特許, プレス発表, 著書等)
 - 日本建築学会(大嶋拓也ほか)、はじめての音響 数値シミュレーション プログラミングガイド、 コロナ社、2012年