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High—performance Randomized Matrix Computations for
Big Data Analytics and Applications

® Background

® Developing random sketching algorithms with high-performance implementations on supercomputers to compute singular value
decomposition (SVD) and linear system (LS) solutions of very large-scale matrices.

® Few numerical solvers, especially randomized algorithms, are designed to tackle very large-scale matrix computations on the latest
supercomputers. .

® We intend to develop efficient sketching schemes to compute approximate SVD and LS solutions of large-scale matrices. The main
idea is to sketch the matrices by randomized algorithms to reduce the computational dimensions and then suitably integrate the
sketches to improve the accuracy and to lower the computational costs.

® We intend to implement the proposed algorithms on supercomputers. One essential component of this project is to develop
effective automatic software auto-tuning (AT) technologies, so that the package can fully take advantage of the computational
capabilities of the target supercomputers that include CPU homogeneous and CPU-GPU heterogeneous parallel computers.

® Members

® Takahiro Katagiri (Nagoya U., Japan) : AT (ppOpen-AT), parallel eigenvalue algorithms, and supercomputer implementations.

® Weichung Wang (National Taiwan U., Taiwan): Numerical linear algebra, parallel computing, and AT (surrogate-assisted turning).
and big data applications.

@® Su-Yun Huang (Institute of Statistical Science, Academia Sinica, Taiwan) : Mathematical statistics and machine learning (random

sketching algorithm).

Kengo Nakajima (U. Tokyo, Japan) : Parallel algorithms in numerical iterative method (hybrid MPI/OpenMP execution).

Osni Marques (LBNL, USA) : Eigenproblem and its implementation (LAPACK, SVD algorithms).

Feng-Nan Hwang (National Central U., Taiwan) : Eigenproblem and its parallelization (SLEPc, SVD algorithms)

Toshio Endo (TITECH, Japan) : System software (optimizations for hierarchical memory and adaptation of its AT)

® iSVD Algorithm

Rank-k SVD Randomized SVD (rSVD) Algorithm 1 Randomized SVD with single sketch (rSVD).
ank-| Require: Input A (real m x n matrix), k (desired rank of approximate SVD), p
1 Sample a random matrix for low-dimensional (oversampling parameter), £ = k + p (dimension of the sketched column space), ¢

Fa ™ I ’ . . (power of projection) o
™ k k k prOJECtIOn. Ensure: Approximate rank-k SVD of A ~ Uy, X, V,:

;. are the k largest singular values of A.

: Assiganw—QWe JU ~ o~ o~
Extract the largest k singular-pairs from Uy, 3¢, V; to obtain Uy, 2k, Vi.

2. Project A to the corresponding low-dimensional | 1: Generate an n x £ random matrix £ (= €2y or Q)
. . . . . 2: Assign Y « (AAT)7AQ
Uy is an m x k orthonormal matrix that k < m, S is a k x k diagonal matrix, and subspace po b \ b 1 bacis of ¥
Vi is an n x k orthonormal matrix. The columns of Uy and Vj are the leading left p . 3: Compute Q whose c_tr) umns are ort} fnorma asis o
singular vectors and right singular vectors of A, respectively. The diagonal entries of | 3 Find a small-sized SVD in the low-dimensional 4: Compute SVD of Q' A = W, %, V,
5:
6:

subspace.

[By Ting-Li Chen, Su-Yun Huang, Hung Chen, David Chang, Chen-Yao Lin, and Weichung Wang]

Algorithm 3 Integration of {Qy; }¥, based on Kolmogorov-Nagumo type averages.

Algorithm 2 Integrated SVD with multiple sketches (iISVD). T
. . . . Ensure: Integrated Q defined in (3.1)
Requlre: Il’lput A (I‘eal m Xn ma,trlX) 5 k (deSlI‘ed I‘ank Of a.ppI‘OXIma.te SVD) , P 1: Assign the current iterate Q. + Q) (or initialized with another Q)

2: while (not convergent) do

(oversampling parameter), £ = k + p (dimension of the sketched column space), ¢ & compute vo.(P) = (I - Q.Q1)PQ..

. . 4:  Select a step size 7.
(pOWer Of prOJ eCtlon) N (number Of random SketChes) 5:  Perform the invers;mapping 4476: (m+¢q.(P)) to get Q defined in (3.7)
6:  Assign Q. + Q.
Ensure: Approximate rank-k SVD of A ~ U A s k Vk 7. end while

N 8: Output Q = Q,

: Generate n x £ random matrices ;) for i = 1,.
Algorithm 4 Integration of {Q;}/Y, based on gradient ascent method.

o = < S NSO R

: Assign Y} + (AAT)1AQ fori=1,..,N Wlth Q[Z] = Qg, or Q..|(in parallel) |/ Require: @@ Qm
ey N . . 2: while (not convergent) do
. Integrate Q < {Qy};L (by Algorithm 3 or Algorithm 4)
Set the current search curve Q(r) = (I — M)~ (I + FM)Q. € Sp¢
. end while.
. Extract the largest & singular-pairs from Ug, 2@, Ve to obtain Uk, Ek, Vk

Ensure: Integrated @ that is the solution of (3.1) and (3.8)
3. Compute the gradient Gr(Q.) = PQ,. and the projected gradient Dp(Q.) =
p— o S T
: Compute SVD Of Q A = W[ E‘e Vé Compute the next iterate Q4 = Q(74) by a selected step-size 74
: Output Q = Q.
® Kolmogorov-Nagumo Average |., = One Step Movmg of |SVD

. Compute Q[z] Whose C01umns are Orthonormal baSiS Of }f[z] (in para ]-el) / 1: Assign the current iterate Q. + Qp (or init‘ialized wiéh another Qp;))
(I -Q.Q)PQ.
4
5:
: Assign Ug — QWZ ¢ Asim Qe Q.
8:
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