11-NA04

マルチフィジックスおよび最適化問題に向けたハイパフォーマンス計算力学

樫山和男(代表者:中央大),牛島省(京都大),寺田賢二郎(東北大), 岡澤重信(広島大),木村一郎(北海道大),中畑和之(愛媛大),浅井光輝(九州大), 松本純一 (産総研), 岩下武史 (京都大), 小山田耕二 (京都大)

> 概要 当研究課題では、固体材料力学、流体力学からマルチフィジックスおよび最適化 問題にわたる広範囲の計算力学手法を大規模問題へ適用する検討を進めた.本報告では, (1)有限積分法による大規模波動解析,(2)上昇気泡群シミュレーション,(3)物体輸送のた めの Euler 型固液二相流解析, (4)粒子法(SPH 法)によるハイブリット並列計算, (5)Phase-Field モデルを用いた有限要素法による気液二相流計算,(6)非定常 Navier-Stokes 方程式の形状最適化,という6つの研究成果を示す.いずれの研究においても、当研究 課題の共同研究体制を基盤として, HX600 (京都大学)の1,024 並列規模の計算における 有効性が確認され、大規模計算における新たな展開が見い出されつつある.

研究の目的と意義

数値解析技術の進歩,計算機の高性能化により, 現在、計算力学は実験や理論のみでは取り扱いが 困難であった各種の工学問題を解決するための有 効な手法となっている. 例えば, 固体力学, 流体 力学の分野においてはマルチスケール理論や非線 形力学理論,乱流のモデリングや多相流問題など を扱うことのできる解法が開発され、これらの物 理問題を連成したマルチフィジックス(多重物理) 解析の新しい計算法が提案されている. さらに, 近年では現象の把握や予測のための数値シミュレ ーションに留まらず,解析によって得られた結果 から, 必要な設計条件を自動的に決定できる逆解 析理論に基づいた最適制御・同定解析を可能とす る数値解析技術開発の試みが行われている. こう した高度な数値解析技術の中には、その解法や計 算アルゴリズムが並列計算に適していない場合も 少なくなく,大規模並列計算を実現するには,開 発した数値解析手法に大規模並列計算に適した解 法への理論的展開や計算アルゴリズムを提案する 必要がある. 高度な数値解析技術のほとんどは, 非常に多くの計算負荷を強いるため、その成果を 工学分野の実現象に応用し、社会でさらに役立つ 意義のあるものとするには、

最新の並列計算機の 能力を十分に発揮する計算アルゴリズムの導入や 学,機械工学分野における計算力学研究者が中心

自由度の高い大規模高速計算を可能にする技術, 現象を把握するための合理的な可視化技術の導入 が不可欠となる.また、3次元実モデルを対象とし たマルチフィジックス解析や逆解析といった統合 的な数値解析を実現するためには、さまざまな分 野の数値解析技術の知識や知見が必然となる.こ のことから、本研究では、いくつかの代表的な計 算力学分野における研究者と,計算機科学・可視 化分野の研究者の協調的な研究体制をとる共同研 究を進めることにより,計算力学分野に対して大 規模高速計算に関わる最新技術を導入し,研究基 盤の高度化と応用範囲の拡大を図ることを目的と する.

2. 当拠点公募型共同研究として実施した意義

(1) 共同研究を実施した大学名

本研究では、「学際大規模情報基盤共同利用・共 同研究拠点|のネットワーク型拠点のうち、京都 大学を共同研究先としており、計算機環境として は Fujitsu HX600(T2K オープンスパコン, 1,024 コ ア)を利用した.

(2) 共同研究分野

本課題の共同研究分野は、超大規模数値計算系 応用分野である.この研究グループでは、土木工 となり,これに計算機科学分野のメンバーを加え た連携体制に基づいて,固体材料力学,流体力学 からマルチフィジックスおよび最適化問題にわた る広範囲の大規模計算利用の有効性を検討してい る.

(3) 当公募型共同研究ならではという事項など 本研究の特色は大きく以下の2点にある.

- 本研究では、特定の計算対象を設定するのではなく、土木工学や機械工学の広範囲にわたる複数の計算力学研究者の連携体制をとっている。すなわち、構造・材料力学、水理・流体力学、最適化問題など広範囲の応用対象を有する分野横断的な研究者が協調して、大規模計算における支配方程式の離散化手法や演算アルゴリズム、並列化手法や計算のプリ・ポスト処理など、分野共通技術に関する研究を進めている。
- ・共同研究先の拠点である京都大学学術情報メディアセンターのプログラム高度化支援研究者を加えることにより、計算力学分野の成果と大規模計算に関わる最新技術の融合を図り、研究基盤の高度化と応用範囲の拡大を目指している。

研究成果の詳細

図1に示す構造解析,流体解析,連成解析,マ ルチフィジックス,最適化問題に関する(1)~(6) の研究成果について解説する.

本研究課題は、図1に示すように構造解析、流

体解析あるいは連成解析,気液二相流解析,逆解 析などの多くの数値解析分野の研究者によって構 成されている.これらの研究者間の情報共有や協 力,定期的に開催を行う予定の参加メンバー内で の情報交換会を通じて,マルチフィジックスおよ び最適化問題に向けたハイパフォーマンス計算力 学に関する解析技術の開発を目的としている.今 年度は,構造解析,流体解析,連成解析では一千 万から一億自由度,逆解析では百万自由度規模の 計算の実現を目標とした.

3.1 有限積分法による大規模波動解析【愛媛大: 中畑和之】

3.1.1 大規模波動解析の問題点

音波・弾性波・電磁波等の物理波動は,物理地 下探査,魚群探知,室内音響,振動,エレクトロ ニクス機器など広く工学問題に応用されている. これら波動の物理的な性質や適用分野は全く異な るが,支配方程式の観点でみればいずれも双曲型 偏微分方程式であり,統一的なアプローチで波動 問題を解くことができる.ここでは,数値解析法 として,陽的有限積分法(FIT)を採用し,イメージ ベース処理を組み込んだ波動伝搬解析について, ハイパフォーマンスコンピューティングを導入し た場合の成果を報告する.

FIT は時間領域の波動伝搬解析法であり, FDTD 法のように電場と磁場を陽的に求める. また, 弾 性波(音波)の場合,応力と速度を交互に更新す る.本解析法の特徴は、数値モデルのボクセルと EFIT のセルのサイズ・位置を一致させることで、 複雑な外部・内部形状を,少ない作業量でモデル 化できることである.しかし、複雑形状が扱える という利点の裏側で、コード内部では異種材料や 吸収境界(PML)をセル毎に場合分けして計算を進 めるため、非常に入り組んだネスト構造となって おり,計算速度の低下を招いていた.また,これ まで、高速化を意図して、計算領域を1次元方向 に分割してプロセス並列をい(1D-MPI),分割され た領域内で共有メモリを用いてスレッド並列を行 うハイブリッド方法を既に導入していたが、期待 したほどスケーラビリティが得られていなかった. 3.1.2 コードの改良と検証

本研究では Lookup table を導入し、メインの計 算が始まる前に予め材料を識別し、計算中はこの table を用いて効率よくデータを参照することにし た.また、3D-MPIを導入し、さらにこの3次元方 向に分割した計算領域でスレッド並列が実行でき るように変更した.もちろん、スレッド並列を併 用しないプロセス並列のみの計算方法(フラット MPI)も可能である.MPI/OpenMP ハイブリッド並 列(4 プロセス(1D-MPI)×16 スレッド)、フラット MPI(3D-MPI,64 プロセス)、および逐次計算による 実行時間の比較を図2に示す.

図2は、200³ボクセルからなる均質・等方性の数 値モデルを用い、1000ステップの更新に要した時 間をプロットしたものである. ここでは、コンパ イラによる速度性能も検証するため, Intel(オプシ ョン -O3), Fujitsu(オプション -Kfast), PGI(オプ ション -fastsse)の 3 つを用いて比較した. コード は Fortran95 で書かれ、すべて倍精度で計算してい る.この結果から、コンパイラによる速度の差は あまり無く, また, いずれのコンパイラを用いた 場合も、フラット MPI による計算が最も短い時間 で終了した.次に、フラット MPI(3D-MPI)を導入 した場合のスケーラビリティについて検証を行う. プロセス数を増加させた場合のスピードアップ S(1 プロセスと、複数プロセスを用いた場合の計算 時間の比)を図3に示す.ボクセル数5003,12003, 20003の3種類のモデルに対して、プロセス数を変 化させた場合のSを比較した.この結果,1000プ ロセスを利用してもSはリニアに向上しており,

改良コードでは非常に良い効率が得られた.

図 3 ボクセル数を変化させた場合のスケーラビリティ(Flat MPI 並列使用, I/O 時間は含まず, メイン計算の実行時間を計測.) 3.1.3 数値解析例

コンクリート内部の超音波伝搬解析例を示す. ここでは被検体の CT 写真を元に数値モデルを作成した. コンクリート被検体(高さ 100mm, 断面 60mm×60mm)の断面 CT 写真を 400 枚撮影し, これを画像処理・補間してボクセル集合体を作成した.数値モデルは,セメントペースト,骨材,空隙の3 相から構成される.骨材の体積率は 32.8%, 微小空隙のそれは 0.3%である. プローブをコンクリート上部に設置したときの超音波伝搬の様子を図4 に可視化した.

ボクセル総数は約 3.5 億個であり, 3600 ステップ の時間更新を要した. フラット MPI(Thin クラスタ, 3D-MPI,64 プロセス)を用いて計算時間は1時間程 であった.

3.2 上昇気泡群シミュレーション【京都大:藤岡 奨・牛島省】

気液界面を通した物質交換現象は、大気海洋間 の CO₂交換現象をはじめ、物質の撹拌や反応促進 など機械工学や化学工学においても盛んに研究さ れている.本研究では、このような現象において 生じる複雑な気液界面の変形及び移動を追跡する ために気相・液相の混相流を扱うことができるマ ルチフェイズモデルである MICS(Multiphase Incompressible flow solver with Collocated grid System)(Ushijima et al., J.JSCE, 2003)を用いて容 器内を上昇する気泡群の3次元計算を行い,大規 模計算における適用性を確かめた. ここでは, 京 都大学学術情報メディアセンターのスーパーコン ピュータを2011 年9月26日21時から2011年9 月28日6時まで及び2011年11月6日9時から 2011年11月6日21時まで利用し、得られた成果 を報告する.

最初の計算ケースでは,計13個の気泡群が自由 水面をもつ水槽内に初期配置される.計算領域は 20×20×60cm³とし,約350万セルに分割した.図5 に示されるとおり,t=0.3[s]において気泡は自由水 面に達し,水面形を大きく変形させる様子を再現 できた.続いて,約9,700個の上昇気泡群の数値 計算を1,024並列環境で実行した.計算領域は40× 40×160[cm³]とし,約1,600万セルに分割した.単 一の気泡の直径に対して計算セルは約10個の割 当てである.計算結果を図6に示す.180ステッ プ計算の計算に対して1,024並列時の計算時間は 約7.5時間であった.計算速度は16並列の計算に 対して約51倍となり,当初の計画に対して一定の 成果が得られた.

3.3 物体輸送のための Euler 型固液二相流解析【京都大:永井克明・牛島省】

本研究では、比較的スケールの大きい物体を含 む流れや自由水面流れのように, 固気液多相間の 相互作用を考慮しなければならない流動現象に対 する数値計算法について検討している. 解法の最 終的な適用対象としては, 津波や洪水等の災害時 に,自由水面の変動を伴う流れによって船舶や家 屋材などが輸送される現象や、漂流物を含む流れ が建造物等に衝突して被害が生ずる事例などを考 えている.現在は、上記の現象を再現するための 計算手法の整備とその並列解法の構築に取り組ん でおり、本手法を基本的な事例に適用することで 大規模並列計算時の性能を確かめた. ここでは, 京都大学学術情報メディアセンターのスーパーコ ンピュータを 2011 年 11 月 5 日 15 時から 2011 年 11月5日21時まで利用し、得られた成果を報告 する.計算結果を図7に示す.上面が速度1.0で 移動する3次元キャビティ内において、円柱状の 超弾性体が流体との相互作用により変形しながら 移動する現象を時間発展的に計算した. 前後の面 は free-slip 条件とし、その他の面は no-slip 条件と した. 固体の解析手法として、杉山らが考案した Euler 型解法(Sugiyama et al., J. Computational Physics, 2011)を採用した.

本手法により、流体との連成計算や並列化を容易

に行うことができる.固体は超弾性体の一種である Neo-Hooke 体とした.流体計算セル数は約1,700万であり,約3,000ステップ(t=6.4)の解析に対して1,024並列時の計算時間は約3.5時間であった.計算速度は128並列の計算に対して約5倍となり,当初の計画に対して一定の成果が得られた.

(d) 1-0.0 図7 3 次元キャビティ流れによる超弾性体の変形

3.4 粒子法(SPH 法)によるハイブリット並列計 算【九州大:浅井光輝】

3.4.1 SPH 法の基礎式

SPH 法では,時刻 t における位置 x_i の関数 ϕ (x_i,t) は,影響半径 h 内に存在する近傍粒子上での 値を用いて,一種の重み付き平均として近似する.

$$\phi(\mathbf{x}_{i},t) \approx \langle \phi_{i} \rangle = \sum_{j} \frac{m_{j}}{\rho_{j}} W(r_{ij},h) \phi_{j}(\mathbf{x}_{j},t)$$
(1)

ここで、Wは重み関数であり SPH 法の分野ではカ ーネル関数と呼ばれ、 $r_{ij} = (|\mathbf{x}_i - \mathbf{x}_j|)$ は粒子 i と粒

子 j の距離を示している.また, m_{i} , ρ_{i} は粒子 i が 代表する領域の質量と密度である.なお,重み関 数としてはスプライン関数 (3 次あるいは 5 次の 関数が用いられることが多い),あるいはガウシア ン関数などの釣鐘型の関数が用いられる.SPH 法 では,関数の微分は,先の粒子離散近似したもの をそのまま微分することで表現する.

$$\nabla \phi(r_i) \approx \langle \nabla \phi_i \rangle_{\text{SPH}} = \frac{1}{\rho_i} \sum_j m_j \left(\phi_j - \phi_i \right) \nabla W(r_{ij}, h)$$
(2)

本研究では、SPH 法には改良型 ISPH 法を提案 し用いた.また、LES 乱流モデルの一種である Smagorinsky 渦粘性モデルを採用しており、このモ デルでは物質固有の物性値である粘性vに、次式 に示す渦粘性v,を加算する.

$$v_{t} = (C_{s}L)^{2}S$$

$$S = \sum_{i,j} \sqrt{S_{ij}S_{ij}}$$

$$S_{ij} = \frac{1}{2} \left(\frac{\partial u_{i}}{\partial x_{j}} + \frac{\partial u_{j}}{\partial x_{i}} \right)$$
(3)

ここで、 C_s , L はモデル定数であり、それぞれ Smagorinsky 定数および初期の粒子間隔に依存す る係数である.またSは、ひずみ速度テンソル S_{ij} から評価されるひずみ率である.

3.4.2 近傍粒子検索方法と並列化効率

粒子法の計算の中でも計算コストが高い演算の 一つとして近傍粒子検索がある.現在開発中のコ ードは図8に示すツリー法を採用している.近傍 粒子検索以外の計算はプロセス・スレッドのハイ ブリッド並列に対応しているが,近傍粒子検索に ついてはプロセス並列のみにしか対応していない. また,粒子法の計算では解析中に近傍粒子の対応 番号が変更するため,メモリアクセスがランダム になり,キャッシュが有効に利用されていないも のと考える.このためか,1024 コア(64 ノード, 16 コア)を占有した際の並列効率は数十倍程度し か実現できていない.今後は,図9に示すリンク リスト検索方法に変更し,さらにリナンバリング を行いメモリの局所性を上げ,並列効率の向上を 図る.

図10には約500万粒子を用いた粒子法による津 波伝播解析例を示す.解析時間の制約もあり,遡 上までの現象を再現することができなかったが, 今後は並列化効率を向上させ,さらにリスタート 機能を追加することで,長時間の津波伝播解析を 実現させることを検討している.

図8 ツリー法による近傍粒子検索

図9 リンクリスト法による近傍粒子検索

図10 宮古市田老地区の津波計算例

3.5 Phase-Field モデルを用いた有限要素法による 気液二相流計算【産総研:松本純一】

昨年度は、16 コアから 1024 コアの実行環境を 使用し、約1千5百万、4千9百万、1億2千万 自由度と段階を追って計算規模を大きくした際に 高い並列度になる並列性能を確認するウィークス ケーリング測定を行った.計算規模を大きくする にしたがって高い並列度が得られ、約1億2千万

自由度の計算速度は 16 コアの計算に対して 1024 コアでは約38倍であった.16コアから計算を実 施した理由は、約1億2千万自由度の計算を実行 するには約180GBの記憶容量が必要であり、1コ アでの計算が不可能なためである.計算を実施し たいづれのケースにおいても 16 コアから 32 コア および 64 コアの並列効率はほぼ 100%となってい るため、1 コアから 16 コアでの並列効率はほぼ 100%(計算速度16倍)と想定され、1024コア使 用時には1コアに対する計算速度は(16×38 倍=) 約 610 倍であると推定される.本計算プログラム は、非構造格子(四面体)を用いた任意形状、不 規則分割に適用が可能であり、並列効率が向上し 易い理想化されたものではなく、より汎用的で複 雑な条件下での並列効率の検証であるため 1024 コア使用時で約610倍の計算速度(推定)は、あ る程度評価できる並列度であると考えている. 今 年度は、実験結果との比較検証を進めるため昨年 度に開発を行った計算プログラムにおいて、並列 性能は保ったまま,より高い表面張力下でも計算 が可能となる表面張力項の評価の改良、流入・流 出を伴い場合においても体積保存が可能な体積補 正法の提案を行った.昨年度実施した計算条件よ り表面張力係数を大きくし、領域をより広域にし た約1億2千万自由度のミルククラウンの計算結 果の効果を図 11 に示す.

図 11 ミルククラウンの計算結果

計算時間は,1024 コアを使用し1000 時間ステッ プの計算で約12 時間であった.図11 をみると液 滴が水面に落下した後に生じるクラウン状の水面 形状を確認できる. 3.6 非定常 Navier-Stokes 方程式の形状最適化【産総研:松本純一】

設計条件などの最適化を単純なシミュレーショ ンの繰返しによる試行錯誤で決定するのではなく, 最適制御理論に基づいた最小化問題で設計条件な どを計算機により適応的かつ自動的に決定する統 合的数値解析技術の開発を目的とする.流体問題 の逆解析は通常の流体解析コードよりもプログラ ミングが非常に煩雑であり,数百倍の計算時間を 必要とするため,大規模計算が必須となる.今年 度は,まず,図12(a)の2次元円柱周りのカルマン 渦が発生する非定常問題(Re=250)での抗力最小問 題を対象にプログラムの並列化を実施し,その後, 図12(b)に示す3次元球円柱周りの螺旋状の渦が発 生する非定常問題(Re=400)での抗力最小問題のプ ログラムの並列化および並列計算を実施した.

非定常Navier-Stokes方程式の形状最適化問題

(a) 2次元円柱周り【抗力最小・面積一定】の問題の結果 (Re=250)

(b) 3次元球周り【抗力最小・面積一定】の問題の結果 (Re=400)

図12 抗力最小, 面積一定の形状最適化問題

Navier-Stokes 方程式における最小化手法を用いた 最適形状問題は,数値的に形状を求めていく反復 過程において計算された形状が振動し,一般的に 形状の波打ち現象が発生する.本研究では,この 形状の波打ち現象を回避することのできる形状平 滑化法を開発し,適用した結果が図 12(a)である. 2 次元では,形状の振動を適切に緩和させるよう な平滑化作用の検討を行ったため良好な結果が得 られている.図 12(b)は約9万自由度の3次元結果 であるが計算時間が通常の流体解析に比べて約 500 倍と非常に長時間の計算であるため,適切な 平滑化作用の検討を実施中である.現在,約 130 万自由度の3元並列計算も着手しているが,計算 時間が非常にかかるため,最終形状を得られるに 至っていない.今後は,より高速な並列化アルゴ リズムや並列計算手法の検討を行う予定である.

4. これまでの進捗状況と今後の展望

3.1節の弾性波 FIT については、上述のようにコ ードの改善を行い、大規模並列時の性能も良好で あることが分かった. 今後は電磁波 FIT について 同様の検証を行う予定である.また、現在 80 億ボ クセル程度の計算を実施できているが、可視化ま では至っていない、今後は大規模データのポスト 処理(可視化)について検討を行いたい.

3.2 節では上昇気泡群の数値計算を実行し,現象 を定性的に再現できることを確認した.今後は界 面周辺の流れの詳細検討及び圧力計算における連 立1次方程式の解法の高速化等が課題である.

3.3 節では Euler 型固液二相流れに対する並列計 算法を構築した.本計算手法を基本的な事例に適 用することにより,実現象への応用可能性を確認 した. 今後の課題として,計算効率の向上と固気 液多相場への拡張があげられる.

3.4 と 3.6 節では、今後、並列化のアルゴリズム や並列プログラムの検討を行う予定である. 3.5 節 は、実験結果との比較検証を進める予定である.

上記のように、大規模計算技術の導入状況は計 算力学の各分野において異なるので、以下のよう な項目に関する検討を並行して研究を進めている。 ①与えられた基礎方程式系に対する数値解を高速 に求めるための計算アルゴリズム

②連立1次方程式の高速解法

- ③既存の並列プログラムをさらに高速化するため の計算機科学手法の導入
- ④各分野の研究者により得られた情報の共有と知識の蓄積

⑤連成問題に対する高速計算法

⑥最適化問題に対する高速計算法

⑦大容量の計算結果のハンドリングと可視化

図13に研究成果と今後の課題を示す.

図13 研究成果と今後の課題

図 13 に示すように、今年度の目標である構造解析、 流体解析、連成解析では一千万から一億自由度、 逆解析では百万自由度規模の計算は達成できたと 考えている((2)と(3)の計算速度は 16 コアと 128 コアの並列効率を 100%と想定し算出). これは、 ①~⑦の検討をある程度、計画的に実施すること が出来たためであると考えている. 一方で、(1)の 80 億自由度といった大規模の計算では、可視化に 対して現状の技術では課題⑦があることが解った. また、(4)と(6)では、100 万自由度以上の計算が可 能であるが、並列効率や計算時間に問題があり、 現状では、目的とする計算を最後まで実施するこ とが難しいという課題③があることが判明した. 今後は、抽出された課題③と⑦に関する検討に注 力する所存である.

5. 研究成果リスト

- (1) 学術論文
- K. Nakahata, et al., Simulation of Ultrasonic and Electromagnetic Wave Propagation for Nondestructive Testing of Concrete using Image-based FIT, Journal of Computational Science and Technology, submitted to.
- (2) 国際会議プロシーディングス
- K. Nakahata, et al., Acceleration of the 3D Image-based FIT with an Explicit Parallelization Approach, Review of Progress in QNDE, Vol.31, in press.

- T. Iga, et al., Simulation of Ultrasonic- and Electromagnetic-Wave Nondestructive Testings for Concrete with Image based FIT, Proceedings of International Conference on Advanced Technology in Experimental Mechanics 2011, OS11F081, 2011.
- (3) 国際会議発表
- J. Matsumoto, Application Problems for Computational Fluid Dynamics based on Orthogonal Basis Bubble Function FEM, COSEIK Annual Conference (Korea-Japan Workshop), April, 2011.
- 2) J. Matsumoto, T. Takada, and S. Matsumoto, One Hundred Million DOF Two-Phase Flow Analysis based on a Phase-Field Model using Implicit Finite Element Method, 11th US National Congress on Computational Mechanics, July, 2011.
- (4) 国内会議発表
- 中畑和之ら、投影光パタンから再構成した3次 元数値モデルを用いた超音波伝搬解析,第16回 計算工学講演会,2011年5月
- 伊賀達郎,中畑和之,電磁波非破壊検査のためのイメージベース FIT に関する検討,第16回計算工学講演会,2011年5月
- 3)藤岡奨,牛島省,多相流場の解法による上昇気 泡群の気液界面面積評価,第25回数値流体力学 シンポジウム講演論文集 USB E11-1,2011年12 月
- 松本純一,高田尚樹,松本壮平,Phase-Field モ デルを用いた陰的混合有限要素法による一億自 由度気液二相流解析,第16回計算工学講演会, 2011年5月
- 5) 松本純一, Navier-Stokes 方程式における形状最 適化と平滑化法, 第16回計算工学講演会, 2011 年5月
- 6) 松本純一, Navier-Stokes 方程式の形状最適化と 平滑化作用の考察,第 16 回計算工学講演会, 2011年9月